

Release 3, Version 5

OEM PackML Implementation Templates

Engineering Group

Users Guide

Release 3, Version 5.0

OEM PackML Implementation Templates
Part 1 - Overview

Engineering Group

Users Guide

Part 1 – i Engineering Group

Content

1 Introduction ... 1

2 PackML Template System Architecture ... 1

3 Mitsubishi PackML Template Key Components... 2

4 Mitsubishi PackML Template Program Structure .. 2

5 PackML_R3_V1 Library .. 3

6 High Level OEM Implementation Steps ... 4

7 Minimum Set PackML Implementation Template ... 5

8 Recommended CPU size for PackML Implementation .. 5

9 Parts of the PackML Implementation Users Guide .. 5

Part 1 – ii Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5.0 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 Version 5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 1: Overview

Part 1 – Page 1 Engineering Group

1 Introduction
This set of Users Guide documents describes the implementation of Mitsubishi OEM PackML Implementation Templates1
and steps on how to use the Templates to implement packaging machine control programs by OEM users. Using the
Mitsubishi PackML templates enables OEMs to implement packaging machine control programs that satisfy the OMAC
PackML standard and align with the OMAC PackML Implementation Guide with much reduced effort.

The main functions of the Mitsubishi PackML templates are to (1) handle PackML state and mode transitions, (2)
accumulate machine execution time in each valid mode and state, and (3) process events (e.g. alarms and warnings) of
machine operations. However, the Mitsubishi PackML templates are NOT intended to be used without modifications or
enhancements with machine control PLC, motion and HMI programs. For example, different PLC, motion controller, and
GOT types that are used in an actual OEM machine will require PLC, motion controllers, and GOT setup parameters to be
adjusted accordingly.

These templates depend on PackML commands and status from PLC, motion and HMI programs to properly perform
machine mode and state transitions at the unit machine level per ISA-88 definition. Thus it is OEM’s responsibility to supply
the proper commands and state status from their machine control programs to the Mitsubishi PackML templates in order
for the PackML machine modes and states to function properly. Event handling function blocks are included in the
Templates to enable easier and more consistent machine event handling.

The details on how the machine control programs should be integrated in the Mitsubishi PackML templates are described in
this document.

2 PackML Template System Architecture
The PackML templates are designed to run on a system with the minimum of a QnUDEH PLC and a GOT-16 HMI. The system
architecture used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a Q06UDEH CPU and
the GOT is a GT-16s with the resolution of 800 x 600.

Because of the large number of tags required to support the PackTags specification, an extended memory card may be
required to be installed in the Q06UDEHCPU in order to store the Symbolic Information.

Ethernet Network Switch

Programming Laptop
192.168.1.5

GOT-16 (800x600)
192.168.1.90

iQ System

USB

Q06UDEH CPU
192.168.1.40

Channel 1

Q172D CPU

Figure 1 – Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and to the Q06UDEH CPU through the GOT Ethernet Transparent Mode. The Transparent

1 Also referred to as Mitsubishi PackML Templates or PackML Templates, or simply Templates in this document.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 1: Overview

Part 1 – Page 2 Engineering Group

Mode is set up to go through the Ethernet port on the Q06UDEHCPU (with IP Address 192.168.1.40). During the system
operation, GOT is configured to work with the iQ PLC through the same Q06UDEHCPU Built-in Ethernet port.

The configurations of these components are described in more details in other parts of the Mitsubishi PackML
Implementation Users Guide.

3 Mitsubishi PackML Template Key Components
The Mitsubishi PackML Template consists of the following key components that an OEM can use directly without
modifications:

1. All PackTags defined and allocated to specific PLC registers

2. PackML_ModeStateManager Function Block

3. PackML_ModeStateTimes Function Block

4. Event Handling Function Blocks

o CM_Event Function Block

o Event_Manager Function Block

o Event_Summation Function Block

o Event_Sort Function Block

The PackTags, PackML Core function blocks, and Event Handling Function Blocks are developed in GX Works 2 and provided
as integral parts of the PackML Template GX Works 2 program in the iQ Works Workspace.

The key PackML function blocks and labels are packaged as a “Library” to allow users to easily import function blocks and
global labels associated with PackML.

The description and implementation of PackTags are described in Mitsubishi PackML Implementation Users Guide – Part 3
PackTags Design Document. The core PackML function blocks are described in Mitsubishi PackML Implementation Users
Guide – Part 4 PackML Core Function Block document. The Event Handling Function Blocks are described in Mitsubishi
PackML Implementation Users Guide – Part 5 Event Handling Function Block document.

4 Mitsubishi PackML Template Program Structure
The Mitsubishi PackML Template program utilizes the key components described in the above section and are organized
following the OMAC Users Group PackML Implementation Guide and the ISA-88 Make2Pack modular structure as shown in
Figure 2 below. All routines of the PackML template program are developed in GX Works 2.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 1: Overview

Part 1 – Page 3 Engineering Group

Figure 2 – Mitsubishi PackML Template Program Structure

In contrast to the Key Components, the Template program structure is intended to be modified to reflect the actual
packaging machine that is being developed. One key objective of the Mitsubishi Template Implementation program is to
demonstrate how a packaging machine program can be laid out and created. It is never intended to be used as is.

As shown Figure 2, the Mitsubishi PackML Template program is designed to represent a packaging machine (Referred to as
Unit_Machine) consists of two equipment modules (EM00 and EM01). Each equipment module consists of four Control
Modules (CM00 to CM03) for machine operations and a Control Module to integrate appropriate PackML commands and
status for each Equipment Module from its control modules CM00 to CM03. An OEM has the flexibility to add or delete
equipment modules and control modules to match the actual machine that is being built.

Release 2 of the Mitsubishi PackML Implementation template does include the function blocks and example codes for
handling events (e.g. alarms and warnings) of the machine. An OEM needs to develop and incorporate machine control
routines to handle events and utilize the Template to help aggregate and manage the event lists. The details of event
handling are listed in Part 5 of the Users Guide.

5 PackML_R3_V1 Library
The PackML core function blocks and PackTag labels are organized into a GX Works 2 User Library to allow users to easily
integrate Mitsubishi PackML functionality to new and existing programs. The template already contains the library.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 1: Overview

Part 1 – Page 4 Engineering Group

Figure 3 – Mitsubishi PackML Library Structure

6 High Level OEM Implementation Steps
High level steps of tailoring the Mitsubishi PackML Templates to an actual packaging machine are described in this section:

1. Install the latest version of the Mitsubishi iQ Works on the programming computer.

2. Establish the Ethernet communication among the iQ PLC system, the GOT, and the programming computer by
configuring proper IP addresses and communication parameters of each device.

3. Analyze the Unit Machine design and divide the machine into proper equipment modules.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 1: Overview

Part 1 – Page 5 Engineering Group

4. Define and allocate control functions into proper modular code and assign them to various control modules.

5. Follow the Mitsubishi PackML Template program structure and add or subtract equipment and control modules as
appropriate. For example, one may add additional Equipment Modules EM02 and EM03 (by cutting, pasting, and
modifying the labels and names using one of the existing module in the template) or delete control modules
EM00_CM03 if it is not needed.

a. The routine names such as “EM00_CM01_Routines” can be modified to “Load_HMI” for example to
better reflect the actual purpose of the module which performs “Load Station Operator interface”
functions.

6. Develop machine PLC code and assign them in proper modules using iQ Works and GX Works 2.

7. Develop the GOT and motion control programs using iQ Works and GT Designer 3 and MT Developer 2 respectively

8. Load programs in PLC, motion control and GOT.

7 Minimum Set PackML Implementation Template
The ISA-88 definition of PackML defines a “minimum” set of PackTags and PackML states that are required for a
machine to be considered an appropriate PackML implementation. A Mitsubishi Minimum Set PackML Template
has been developed to satisfy the OMAC PackML standard using minimum set of tags and states. The minimum
set template is ideal for simple machines that do not require all the PackTags and states that are defined in the
full PackML template implementation. This enables the OEMs to use smaller and more cost effective PLCs for
their PackML compliant packaging systems.

8 Recommended CPU size for PackML Implementation
The recommended Q series CPU model for implementing the PackML solution will depend on the size of each system. As a
general guideline, the recommended CPU model for the full PackML implementation template is Q06UD(E) CPU. For the
minimum implementation, smaller Q03UD(E) may be sufficient.

In either of these cases, the “Symbolic File Information” of the program (which includes FB, label and program data) must
be downloaded into the “Standard ROM” location in the PLC CPU. This procedure is explained in Part 6 section 8 (Program
Structure document).

9 Parts of the PackML Implementation Users Guide
The Mitsubishi PackML Implementation Users Guide consists of 8 documents:

Documents Descriptions

Part 1 - Overview Overview of the Mitsubishi PackML Template package and program structure

Part 2 – MELSOFT Navigator Descriptions of configuring the PackML Template System using iQ Works MELSOFT
Navigator

Part 3 – PackTags Design details of implementing PackTags in the PackML Templates

Part 4 – PackML Library and
Function Blocks Design details and PLC code of the core PackML function blocks

Part 5 – Event Handling FBs Design details and PLC code of event handling function blocks

Part 6 – Program Structure
Design details on the structure of the OEM Machine program following the OMAC
Implementation guide and the Make2Pack modularization. Description on the
initialization of PackML states, aggregation of PackML status and commands through

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 1: Overview

Part 1 – Page 6 Engineering Group

various equipment and control modules, and steps to modify the aggregation of
PackML status and commands when equipment modules and control modules are
added or removed.

Part 7 – GOT Screens Description of GOT sample screens to display PackML current mode and state and
also the accumulated time for each mode and state.

Part 8 – Minimum Set Template Description Mitsubishi Minimum SetPackML Template package and program
structure

Release 3, Version 5

OEM PackML Implementation Templates
Part 2 - MELSOFT Navigator Configuration

Engineering Group

Users Guide

Part 2 – i Engineering Group

Content

1 Introduction ... 1
2 MELSOFT Navigator Configuration .. 1

2.1 Module Configuration ... 1
2.2 Network Configuration .. 3
2.3 Adding Programs to PLC and GOT ... 4

2.3.1. Creating New PLC Program .. 4
2.3.2. Adding Existing Programs .. 5
2.3.3. Allocating Programs ... 5

3 Registering Labels in the System Label Database .. 7
4 Using the System Labels in the GOT Program ... 9

4.1 Establish Route Information .. 9
4.2 Setting Up System Labels for GOT Use .. 10
4.3 Using the System Labels in GOT .. 13

5 Summary .. 17

Part 2 – ii Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5.0 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 1 Custom Solutions Center Engineering Group

1 Introduction
This document describes the steps of configuring MELSOFT Navigator within the iQ Works software to establish the PackML
Template System.

The PackML template system consists of a Q06UDEHCPU, Q172DCPU Motion Controller and a GOT-16 HMI. The system
architecture used to create the Mitsubishi PackML templates is shown in the following block diagram. The PLC is a
Q06UDEHCPU and the GOT is a GT-16s with the resolution of 800 x 600.

Ethernet Network Switch

Programming Laptop
192.168.1.5

GOT-16 (800x600)
192.168.1.90

iQ System

USB

Q06UDEH CPU
192.168.1.40

Channel 1

Q172D CPU

Figure 1 – Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and to the Q06UDEHCPU through the GOT Ethernet Transparent Mode. The Transparent
Mode is set up to go through the Ethernet port on the Q06UDEHCPU (with IP Address 192.168.1.40). During the system
operation, GOT is configured to work with the iQ PLC through the same Q06UDEHCPU Built-in Ethernet port.

2 MELSOFT Navigator Configuration
Using the MELSOFT Navigator of the iQ Works package, one can create an integrated database that allows system labels to
be used harmoniously among the PLC, GOT and Motion control programs.

2.1 Module Configuration
The first step of creating an integrated project is to define the Module Configuration using the MELSOFT Navigator, as
shown in Figure 2 below:

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 2 Custom Solutions Center Engineering Group

Figure 2 – Creating New Module Configuration

a. When the new Module Configuration workspace is open, one can select all the necessary modules to create
an iQ platform that represents the actual hardware platform. In the PackML Template System, an eight-slot
main base module (Q38DB) was selected and dragged to the Module Configuration workspace as shown in
Figure 3.

Figure 3 – Module Configuration with Base Module

b. Power supply Q64P, Universal Model CPU Q06UDEHCPU, and Motion Controller Q172D CPU were added to
the system. The PLC Module was configured with the proper Station Number and IP address using “Input
Detailed Configuration Information” screen as shown in Figure 4.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 3 Custom Solutions Center Engineering Group

Figure 4 – Q06UDEHCPU Module Configuration

2.2 Network Configuration
a. After the Module Configuration is completed, the Module Configuration is automatically reflected in the

Network Configuration workspace. For the PackML Template System, the Ethernet network is added to the
Network Configuration as Network No. 1 as shown in Figure 5.

Figure 5 – Initiating PackML Template System Network Configuration

b. Using the Network Cable tools, one can connect the Ethernet port on the Q06UDEHCPU to the network as
shown in Figure 6.

Figure 6 – Connecting Modules to the Network

The “Module Configuration” workspace is now showing the modules are connected to Network #1.

Figure 7 – Module Configuration Reflecting Network Connections

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 4 Custom Solutions Center Engineering Group

c. From the Module List, one can add a GOT to the system. For the PackML Template System, a GT16 with the
resolution of 800 x 600 is added to the system and then configured with the proper channel designations and
IP address as shown in Figure 8 and Figure 9 respectively. Please note that the CH1 Station No. has been
changed to “3” from the default value “1” reflecting the current configuration. Again, using the Network Cable
tool, one can connect the GOT to the Integration System and the network configuration is complete.

Figure 8 – Adding a GOT to the System

Figure 9 – Configuring the GOT

2.3 Adding Programs to PLC and GOT
Once the PackML Template System is configured with proper modules and network connectivity, one can start to add
PLC and GOT programs to the system.

2.3.1. Creating New PLC Program
A new PLC program can be created by double-clicking the CPU module in the Module Configuration workspace
and fill in the pop-up window as shown in Figure 10 and click “Create.”

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 5 Custom Solutions Center Engineering Group

Figure 10 – Creating a New PLC Program

2.3.2. Adding Existing Programs
Another approach is to add existing PLC and GOT projects to the MELSOFT Navigator.

a. From the MELSOFT Navigator project tree, one can right-click the “No Assignment Project” selection and
select “Import Project…” as shown below.

Figure 11 – Importing Projects to iQ Works Navigator

b. One can then select GX Works 2, MT Developer 2, and GT Designer 3 files from the Windows Explorer into the
Navigator. The following example shows GX Works 2 file “PackML Implementation” and GT Designer 3 file
“PackML Mode State Screen” and MT Developer 2 “Motion Config Examle PackML” were added to the
Navigator. Note that the CPU, Motion Controller, and GOT types for the projects are shown next to the file
names.

Figure 12 – Example of Imported Files

2.3.3. Allocating Programs
Once the programs are imported, they need to be allocated to the proper modules and network component.
From the Navigator project tree, one can right-click the “Module Configuration” and select “Allocate Project

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 6 Custom Solutions Center Engineering Group

with Controller …” and a pop-up window will appear to allow the user to select the files that match the CPU
module configurations from a drop-down list as shown in Figure 13 and Figure 14.

Figure 13 - Allocating Project to CPU Module

Figure 14 – Allocating CPU Program

a. Similar procedures can be followed to add the GOT program to the configured GOT in the system as
shown in Figure 15 and Figure 16.

Figure 15 – Allocating Project to GOT on the Network

Figure 16 – Allocating GOT Program

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 7 Custom Solutions Center Engineering Group

3 Registering Labels in the System Label Database
Once the PLC and GOT programs are allocated to the MELSOFT Navigator, the important next steps are to create the system
label database so that the labels defined in one of the programs can be shared and used by another program.

In the PackML Template System, all system labels are originated from the PLC program, thus the steps in this document
describe the procedure relating to creating the system labels from the PLC program. Similar steps can be taken if any GOT
labels need to be shared with the PLC. Consult the Motion Controller and GOT manuals on how to define the labels and
register them in the System Label Database.

a. Launch the GX Works 2 and in the PLC program, open the global variable window. Select the labels that need to be
registered in the System Label Database and then click the “Register Device Name” button and confirm the
operation as shown in Figure 17.

Figure 17 – Registering Global Labels in System Label Database

b. In the Navigator, select Workspace -> Parameter -> Batch Reflect as shown in the following figure:

Figure 18 – Batch Reflect the Registered Label

A pop-up window as show below will appear. Confirm the execution of the execution by clicking the “Execute
Reflection” button as shown in Figure 19.

Figure 19 – Selecting Execute Reflection

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 8 Custom Solutions Center Engineering Group

A second pop-up window will appear and confirm the execution by clicking the “Yes” button in Figure 20.

Figure 20 – Confirming Execute Reflection

The labels that will be registered are display in a window similar to Figure 21 below. Make sure the labels are
the ones that need to be registered and click the “Reflection” button to initiate the registration. The MELSOFT
Navigator will attempt to close the GX Works2 Project. Select “Yes” to close the GX Works 2 project so that
the System Labels can be reflected in the data base.

Figure 21 – Reflecting Labels to System Label Database

c. If there is no error in creating the system labels in the database, an indication will be blinking in the Navigator.
Right click on the blinking symbol and select the “Change Contents of System Label Database” as shown in Figure
22.

Figure 22 – Updating System Database in the Navigator

The change contents will then be shown similar to the Figure 23 below. Click the “Import” button and import
the changes to the Navigator.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 9 Custom Solutions Center Engineering Group

Figure 23 – Database Change Contents

4 Using the System Labels in the GOT Program
To utilize the system labels in the GOT program, one needs to configure the objects in the GT Designer 3. In order for the
labels to be recognizable in the GOT program, the Navigator system needs to establish routing information.

4.1 Establish Route Information
From the Navigator, launch the GT Designer 3 with the GOT screens for the application as shown in the figure below:

Figure 24 – Launching GT Designer 3

When GT Designer 3 program is launched, the program will perform a system label update/check operation. If there are
any system labels that are already in use, the error messages as in Figure 25 will be displayed indicating that there is no
route information. In order words, GT Designer 3 does not know where the origins of these system labels are so it can
interact with the label properly.

Figure 25 – Error Showing Lack of Route Information

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 10 Custom Solutions Center Engineering Group

Leaving the GT Designer 3 project open, one can then launch the “Route Information” function from the Navigator
using the MELSOFT Navigator project tree by selecting Workspace -> Parameter -> Route Information/ Route
Parameters as shown in Figure 26.

Figure 26 – Establish Route Information

A pop-up window will appear allowing the user to save the GT Designer 3 project and the system will generate the
route information as shown in Figure 27. Click “OK” to accept the Route Information.

Figure 27 – Route Information Check Display

4.2 Setting Up System Labels for GOT Use
a. In GT Designer 3, select Tools -> System Label Update/Check as shown below to update the system labels in

the GOT.

Figure 28 – Using System Label Tool in GT Designer 3

b. From the Navigator, select Workspace -> Check -> Batch Check to verify if there is any error in the system label
operation.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 11 Custom Solutions Center Engineering Group

Figure 29 – Batch Check the System Labels

Confirm the Batch Check operation by selecting “Yes” in the pop-up windows that appear as shown in the
figures below:

Figure 30 – Pop-Up Windows for Batch Check Confirmation

c. After the Batch Check is completed and there is no error, the following window will appear. Select “Yes” to
bring up the next window and then select the “Execute Verify” to continue the Batch Verification process.

Figure 31 – Pop-Up Windows for Batch Check Verification

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 12 Custom Solutions Center Engineering Group

d. If there is any error after the Batch Verification process, a window similar to Figure 32 will appear showing the
error.

Figure 32 – Batch Verification Result Screen

e. The error in Figure 32 is fairly common indicating that system parameters configured through module and
network configurations in the Navigator have not been properly reflected in the PLC and/or GOT programs.
Execute Workspace -> Parameter -> Batch Verification of System Configuration Information and Parameters as
shown below.

Figure 33 – Bach Verification Configuration and System Labels

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 13 Custom Solutions Center Engineering Group

Select the “Execute Verify” button to confirm the reflection of system configuration information and
parameters.

f. Execute “Batch Reflect” again and then “Check”, “Batch Check” to make sure there is no mismatch.

Figure 34 – Output Window Showing Verification Results

4.3 Using the System Labels in GOT
a. From GT Designer 3, select Tools -> Options, select the “Operation” tab, and select the “Always Display”

option in “CH No. Selection Dialog Display Setting” to enable the system labels to be shown in DT Designer 3.

Figure 35 – Enabling System Labels in GOT

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 14 Custom Solutions Center Engineering Group

b. Double click on one of the objects on a GOT screen where a system label will be use to bring up the
corresponding Object Property window as shown in Figure 36 as an example.

Figure 36 – Configuring a Bit Switch Object to Use the System Label

c. Click the “…” button as shown in Figure 36, the following screen will appear for the user to select the system
label that should be used with the selected bit switch device. Click the “Select System Label” button.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 15 Custom Solutions Center Engineering Group

Figure 37 – Selecting System Label in GOT

d. The system labels will be displayed in the table as shown in Figure 38. Select the proper system label to be
used with the bit switch and click the “Import” button.

Figure 38 – Selecting System Label from the Database

The label will then show in the object property window as shown below. However, if the routing information
has not been properly established, the label will be pre-fixed with two question marks “??” indicating the
label is still not yet valid to be used by GOT.

Figure 39 – Verifying System Label Validity in GT Designers 3

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 16 Custom Solutions Center Engineering Group

e. If that is the case, execute “Tools -> System Label Update / Check” in DT Designer 3 and the following error
message will be displayed conforming that there is no route information. In other words, GT Designer 3 does
not know where the system label is originated.

Figure 40 – System Label Update Check Error in GT Designer 3

f. From the Navigator, select “Workspace -> Parameter -> Route Information/Routing Parameters” and the
proper routing information will then be generated showing where the system label data is originated as shown
in Figure 42.

Figure 41 – Generating Routing Information for System Labels to be Used in GT Designer 3

Figure 42 – Routing Information

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 2: MELSOFT Navigator Configuration

Part 2 – Page 17 Custom Solutions Center Engineering Group

g. Execute Batch Reflect again on the Navigator. If there is no error, re-launch GT Designer 3, and the System
Label Update / Check operation will execute automatically. The system label will now become valid as shown
in Figure 43 without the question marks.

Figure 43 – Valid System Label in GT Designer 3

5 Summary
After completing the configuration steps described in this document, the system foundation is established to support the
detailed application program development.

Users should refer to user and system manuals corresponding to the hardware components and software packages that are
used in an application for further details.

Release 3, Version 5

Engineering Group

Users Guide

OEM PackML Implementation Templates
Part 3 – PackTags Design and Implementation

Part 3 – i Custom Solutions Center Engineering Group

Content

1 Introduction ... 1

2 Key PackTags Design Considerations ... 1

3 PackTags Implementation Considerations ... 1

4 iQ System Configuration .. 2

4.1 PLC File ... 3

4.2 Device ... 3

4.3 Built-in Ethernet Port Setting ... 4

5 GX Works2 Label Implementation ... 6

5.1 Command Labels – PackTags_Command ... 6

5.2 Status Labels – PackTags_Status .. 7

5.3 Administrative Labels ... 8

6 Kepware Server Configuration ... 8

6.1 Adding a Channel of Communication ... 8

6.2 Adding Devices ... 11

7 Kepware Tags Implementation .. 17

7.1 Creating the Tags .. 17

8 PackTags Design Template Software Files ... 19

Appendix A ... 20

A.1 Command Tags – Spec to GX Works2 Labels ... 20

A.2 Command Tags –GX Works2 Labels to Kepware Tags ... 22

A.3 Status Tags – Spec to GX Works2 Labels ... 24

A.4 Status Tags –GX Works2 Labels to Kepware Tags ... 26

A.5 Admin Tags – Spec to GX Works2 Labels ... 28

A.6 Admin Tags –GX Works2 Labels to Kepware Tags ... 33

Part 3 – ii Custom Solutions Center Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V1.1 February 19, 2016 Modified PackTags dimensions also newer version of Kepware OPC server

R3 V5 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 1 Custom Solutions Center Engineering Group

1 Introduction
The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackTags specification in an iQ PLC.

PackTags specification is a part of the overall OMAC PackML standard and defines a set of named data elements used for
open architecture, interoperable data exchange in automated machinery. PackTags are useful for machine-to-machine
(inter-machine) communications; for example between a Filler and a Capper. PackTags can also be used for data exchange
between machines and higher-level information systems like Manufacturing Operations Management and Enterprise
Information Systems.

The use of all PackTags is needed to be consistent with the principles for integrated connectivity with systems using this
same implementation method. Required tags are those necessary (1) for the function of the automated machine or (2) the
connectivity to supervisory or remote systems.

This document describes the implementation of the PackTags template files as a part of the Mitsubishi PackML Template
system.

2 Key PackTags Design Considerations
The PackTags are implemented as a part of the Mitsubishi PackML Template system. The PackML Template system
architecture is described in Part 1 of the Users Guide. Because of the large number of tags required to support the PackTags
specification, an extended memory card maybe required to hold the symbolic information depending on the type of PLC
that is used.

Generally, PackTags data is passed to higher-level information system using OPC protocol on a standard Ethernet-based
communications network. Thus, in addition to the Template System hardware and iQ Works software, a Kepware OPC
server is also integrated to work with the iQ PLC to form a total solution set. Kepware KEPServerEX V5.19 with enhanced
Mitsubishi Ethernet Driver is used in the PackML Template system implementation.

Following is a list of critical PackTags design considerations:

• The PackTags are implemented in an iQ PLC system as global labels and readily available for use by OEM machine
control programs. In other words, the tag values should be accessible and be populated by OEM machine control
programs.

• The PackTags should be accessible by external systems compliant to PackML and PackTags standards.

• The PackTags implementation on iQ should be directly usable by users of the iQ system. In other words, all PackTag
labels should be configured and ready for use by users without additional configuration of the labels. All register
assignments should not have to be altered by users of the system.

• Restrictions are placed on the dimensions of the variables to reduce the amount of memory locations that are
consumed to support the tags.

3 PackTags Implementation Considerations
All PackTags are implemented as global labels, and the built-in Ethernet port on the iQ PLC CPU is used to connect the iQ
system to Kepware OPC server.

The label names are shortened from the PackTags specification to be used with the iQ platform. PackTags are implemented
in three Data Groups: Command, Status, and Admin, and the correlation of standard PackTag names to the shorten iQ
labels and the Kepware tags is shown in the Appendix A for reference.

Following restrictions are placed on the dimensions of the labels:

• The remote interface number (i.e. the total number of upstream and downstream machines) is set to 10.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 2 Custom Solutions Center Engineering Group

• The number of parameters that are given to the unit machine from remote machines is limited to 10. The parameters
are typically needed for coordinating the unit machine or production with other machines.

• The number of parameters that are given to the unit machine locally is limited to 10.

• The number of product types that can be produced on a machine is limited to 5.

• The number of process variables needed by a unit machine for processing a specific product is limited to 10.

• The number of raw materials (ingredients) that are used by a unit machine in the processing of a particular product is
limited to 10.

• The number of parameter tags associated to the local interface (e.g. parameters that are displayed or used on a unit
locally such as an HMI) is limited to 10.

• The number of alarms of a machine is limited to 64.

• The number of alarm history is limited to 256.

• The number of Modes of a machine is limited to 10

• The number of states in each mode of a machine is limited to 20.

• The number of material used or consumed in a production machine is limited to 10.

• The number of product types that can be processed by a production machine is limited to10.

• The number of product types that can be marked as defective by a production machine is limited to 10.

4 iQ System Configuration
This section documents the configuration of PLC parameters to support the PackTags implementation.

Figure 1 – Selecting PLC Parameters for Configuration

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 3 Custom Solutions Center Engineering Group

4.1 PLC File
Because of the large number of tags required to support the PackTags specification, a PLC file is used to allocate
extended memory locations for the PackTags and system labels that are used to process events (See Part 5 of the Users
Guide).

Select the “PCL Parameter” and then the “PLC File” tab to add the extended memory in the system.

Figure 2 – Configuring PLC File and Capacity

It is critical to note that the PLC file is assigned to Standard RAM of the PLC. One can choose to add an external memory
card to the PLC and assign the PLC file to the memory card. However, because of the access time to the memory card is
not as efficient comparing to it of the Standard RAM, assigning the PLC file to Standard RAM significantly reduces the
PLC program scan time.

Depending on the type of PLC used in the system, the capacity of the Standard RAM may vary. However, configuration
with 300K points is sufficient to address the total number of PackTags and system labels that are used in the PackML
Template system.

4.2 Device
In this PackTags implementation, most labels are assigned to D registers. A few tags with data type bits are assigned to
M bits. In the “Device” tab, assign the extended points to both D and ZR registers. The default is assigning the
additional device points to ZR registers only. Make sure that the ZR register points are set to 160K and Extended Data
Registers “D” are set to 200K points.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 4 Custom Solutions Center Engineering Group

Figure 3 – Configuring File Register Extended Setting

4.3 Built-in Ethernet Port Setting
The built-in Ethernet port of the CPU module is used to communicate with the Kepware OPC server. The Ethernet port
should be configured properly as described below and shown in Figure 4:

• Set the proper IP address and Subnet Mask

• Select “Binary Code”

• Select “Enable onlne change (FTP, MC Protocol)”

Figure 4 – Configuring the Built-in Ethernet Port

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 5 Custom Solutions Center Engineering Group

• Click the “Open Setting” and configure the channel to communicate using TCP, UDP, MC Protocol, and port
number to the desired value.

o In the PackML Template System architecture, the port number is set at hexadecimal number 5001(or
decimal value 20481) for communication between the GOT and the PLC with UDP protocol.

o The Port Number 5002 is configured to use TCP for communication with the Kepware OPC server.

Figure 5 – PLC Communication Channel Configuration for GOT and OPC Communication

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 6 Custom Solutions Center Engineering Group

5 GX Works2 Label Implementation
As shown in the Appendix, all the labels that are required to support the PackTags standard are implemented in the iQ PLC
using GX Works2 global labels. The PackTags labels are grouped into three categories: Command labels, Status labels, and
Administrative labels. Five different structured data types are also created to support the label definitions.

The PackTag global labels are part of the “PackML_R3_V1” library which is already part of the template. The library can
easily be incorporated into existing OEM programs.

Figure 6 – Global Label Groups and Structure Data Types

5.1 Command Labels – PackTags_Command
The Command labels are created in the Global Label section with the proper data types.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 7 Custom Solutions Center Engineering Group

Figure 7 – PackTags_Command Global Labels

The structured data types used in the Command Labels are PackML_Cmd_Remintf_Type and PackML_Cmd_Pdt_Type. Their
configurations are shown in the follow two screens.

Figure 8 – PackML_Cmd_Remintf_Type and PackML_Cmd_Pdt_Type labels

5.2 Status Labels – PackTags_Status
The Status labels are created in the Global Label section with the proper data types.

Figure 9 – PackTags_Status Global Labels

The structured data types used in the Status Labels are Sta_Remintf_Type and Sta_Pdt_Type. Their configurations are
shown in the follow two screens.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 8 Custom Solutions Center Engineering Group

Figure 10 – Sta_Remintf_Type and Sta_Pdt_Type labels

5.3 Administrative Labels
The Administrative labels are created in the Global Label section with the proper data types.

Figure 11 – PackTags_Admin Global Labels

6 Kepware Server Configuration
An OPC server is required to connect the PackTags implemented in the iQ PLC to an external world such as a MES system or
an HMI.

Kepware OPC server is used for the PackTags implementation because of its functionality and capable Mitsubishi driver to
connect with Mitsubishi devices. It also supports long tag names and this capability allows the shortened label names to be
mapped to the names as specified in the PackTags specification.

6.1 Adding a Channel of Communication
• Start the Kepware KEPServer Ex software and click to add a channel. In the example, the Channel Name is

PackML.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 9 Custom Solutions Center Engineering Group

Figure 12 – Adding Channel in Kepware

• Select the Device Driver to be “Mitsubishi Ethernet” from the drop down list

Figure 13 – Adding Device Driver to the Channel

• Define the Network Adapter of the system where the OPC Server is running on. In this example, the interface
card is at IP address 192.168.1.5.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 10 Custom Solutions Center Engineering Group

Figure 14 – Selecting the Network Adaptor where the OPC Server is Running

• At the “Write Optimization” screen, a user can determine which method should be used to give the optimized
performance of the server for his system. In this example, default values are used.

Figure 15 – Selecting Optimization Method

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 11 Custom Solutions Center Engineering Group

• Click the “Finish” to complete adding the Channel.

Figure 16 – Completing OPC Channel Configuration

6.2 Adding Devices
After the channel is defined, devices that need to be monitored can be added to the channel. Click to add a device:

Figure 17 – Adding Device to Channel

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 12 Custom Solutions Center Engineering Group

• The configuration of the Built-in port is done first with the device name of “QPLC BuiltIn Port”

Figure 18 – Naming the Communication Device

• Select Device Model to be “Q Series” from the drop down list:

Figure 19 – Selecting the Mitsubishi Device Type

• Define the Device ID to be “192.168.1.40:255.”

o The normal format of configuring the Device ID for a QPLC in the Kepware server is “IP Address :
Network Number : Station Number” However, the Built-In port can not be addressed using network
number and station number. Thus, it is assuming the network number to be zero (thus omitted from
the Device ID format) and a general station number of 255.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 13 Custom Solutions Center Engineering Group

Figure 20 – Entering the Device ID

• The user can configure the timing parameters to optimize the communication performance. In this example,
default values are used:

Figure 21 – Selecting the Timing Parameters

• A user can also enable the auto demotion of a device when communication is lost. One should configure this
parameter according his application needs. In this example, auto-demotion is not configured.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 14 Custom Solutions Center Engineering Group

Figure 22 – Configuring Auto-Demotion Function

• The default of the device is set at First Word Low. This configuration is correct for Q PLC. Ensure the check box
is selected.

Figure 23 – Selecting Word Order

• Select the IP protocol to TCP/IP and the port number to be 20482 (i.e. 0x5002) as configured earlier for the
Built-in Ethernet port in Section 4.3

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 15 Custom Solutions Center Engineering Group

Figure 24 – Configuring IP Protocol and Port Number

• Select the proper time synchronization with the PLC per application requirements. In the example, no
synchronization method was used.

Figure 25 – Selecting Synchronization Method with PLC

Select “Finish” to complete adding the device.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 16 Custom Solutions Center Engineering Group

Figure 26 – Completing the Adding Device Process

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 17 Custom Solutions Center Engineering Group

7 Kepware Tags Implementation
OPC tags can be added manually one at a time. With the large number of tags for the PackTags implementation, it is easier
to create the tags in Excel worksheets and import them to the OPC server. For the PackTags implementation, all OPC tags
are created in Excel and be imported.

7.1 Creating the Tags
Three tag groups are created for each device for easy monitoring and sorting. The three tag groups are named
“Command”, “Status”, and “Admin.”

• Right click on a Device and select “New Tag Group…”

Figure 27 – Creating Tag Groups

• Define the Group Name to be “Command.”

Figure 28 – Adding the Command Group

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 18 Custom Solutions Center Engineering Group

• Repeat the steps and define Tag Groups.

Figure 29 – Adding Other Tag Groups

• Right click on one of the groups and select “Import CSV…” to import the tags for the particular group.

Figure 30 – Importing Tags from CSV Files

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 3: PackTags Design and Implementation

Part 3 – Page 19 Custom Solutions Center Engineering Group

• Select the proper tag files and complete the import process for this group. Repeat the same steps to import
the rest of the tags.

Figure 31 – Selecting the File to Import

8 PackTags Design Template Software Files
The PackTags design template files are included in the Mitsubishi PackML Template System package. Following are the
template files:

• GX Works2 File – As a part of the overall iQ Workspace “PackML OEM Template R3 V5”

• Kepware OPC Server File – PackTags Release 3 V5.opf

• OPC Tag files - QPLC ADM R3 V5.csv, QPLC CMD R3 V5.csv, QPLC STA R3 V5.csv

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 20 Engineering Group

Appendix A
A.1 Command Tags – Spec to GX Works2 Labels

PackTag Specification GX Works 2 Labels
Tags Data Type Label Data Type

UnitName.Command.UnitMode Int (32bit) gvd_Cmd_UnitMode Double Word[Signed]

UnitName.Command.UnitModeChangeRequest Bool gvb_Cmd_UnitModeChangeRequest Bit

UnitName.Command.MachSpeed Real gvl_Cmd_MachSpeed FLOAT (Double Precision)

UnitName.Command.MaterialInterlock Bool Structure gvdu_Cmd_MaterialInterlocks Double Word[Unsigned]/Bit
String[32-bit]

UnitName.Command.CntrlCmd Int (32bit) gvd_Cmd_CntrlCmd Double Word[Signed]

UnitName.Command.CmdChangeRequest Bool gvb_Cmd_CmdChangeRequest Bit

UnitName.Command.RemoteInterface[#].Number Int (32bit) gvda_Cmd_Number_RemInt[#] Double Word[Signed](0..9)
UnitName.Command.RemoteInterface[#].ControlCmdNumber Int (32bit) gvda_Cmd_CntlCmdNum_RemIntf[#] Double Word[Signed](0..9)
UnitName.Command.RemoteInterface[#].CmdValue Int (32bit) gvda_Cmd_CmdValue_RemIntf[#] Double Word[Signed](0..9)

UnitName.Command.RemoteInterface[#].Parameter[#] Descriptor
Structure gvsta_Cmd_RemIntf[#] PackML_Cmd_RemIntf_Type_SDT(0.

.9)
UnitName.Command.RemoteInterface[#].Parameter[#].ID Int (32bit) gvsta_Cmd_RemIntf[#].da_ID_Para[#] Double Word[Signed](0..9)

UnitName.Command.RemoteInterface[#].Parameter[#].Name String gvsta_Cmd_RemIntf[#].sa_Name_Para[#
] String(34)(0..9)

UnitName.Command.RemoteInterface[#].Parameter[#].Unit String gvsta_Cmd_RemIntf[#].sa_Unit_Para[#] String(34)(0..9)
UnitName.Command.RemoteInterface[#].Parameter[#].Value Real gvsta_Cmd_RemIntf[#].la_Value_Para[#] FLOAT (Double Precision)(0..9)

UnitName.Command.Parameter[#] Descriptor
Structure gvsta_Cmd_Parameter[#] PackML_Cmd_Parameter_SDT(0..9)

UnitName.Command.Parameter[#].ID Int (32bit) gvsta_Cmd_Parameter[#].d_ID Double Word[Signed]
UnitName.Command.Parameter[#].Name String gvsta_Cmd_Parameter[#].s_Name String(32)
UnitName.Command.Parameter[#].Unit String gvsta_Cmd_Parameter[#].s_Unit String(32)
UnitName.Command.Parameter[#].Value User Defined gvsta_Cmd_Parameter[#].l_Value FLOAT (Double Precision)
UnitName.Command.Product[#] Product Structure gvsta_Cmd_Pdt[#] PackML_Cmd_Pdt_Type_SDT(0..4)
UnitName.Command.Product[#].ProductID Int (32bit) gvsta_Cmd_PdtID_Pdt[#] Double Word[Signed](0..4)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 21 Engineering Group

UnitName.Command.Product[#].ProcessVariables[#].ID Int (32bit) gvsta_Cmd_Pdt[#].da_ID_ProVar[#] Double Word[Signed](0..9)
UnitName.Command.Product[#].ProcessVariables[#].Name String gvsta_Cmd_Pdt[#].sa_Name_ProVar[#] String(34)(0..9)
UnitName.Command.Product[#].ProcessVariables[#].Unit String gvsta_Cmd_Pdt[#].sa_Unit_ProVar[#] String(34)(0..9)
UnitName.Command.Product[#].ProcessVariables[#].Value Real gvsta_Cmd_Pdt[#].la_Value_ProVar[#] FLOAT (Double Precision)(0..9)

UnitName.Command.Product[#].Ingredients[#].IngredientID Int (32bit) gvsta_Cmd_Pdt[#].da_IngID_Ings[#] Double Word[Signed](0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].ID Int (32bit) gvsta_Cmd_Pdt[#].da_ID_Ings_Para[#,#] Double Word[Signed](0..9,0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].Name String gvsta_Cmd_Pdt[#].sa_Name_Ings_Para[
#,#] String(34)(0..9,0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].Unit String gvsta_Cmd_Pdt[#].sa_Unit_Ings_Para[#,
#] String(34)(0..9,0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].Value Real gvsta_Cmd_Pdt[#].la_Value_Ings_Para[#
,#] FLOAT (Double Precision)(0..9,0..9)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 22 Engineering Group

A.2 Command Tags –GX Works2 Labels to Kepware Tags

PackTag Specification GX Works 2 Labels
Tags Data Type Label Data Type

UnitName.Command.UnitMode Int (32bit) gvd_Cmd_UnitMode Double Word[Signed]
UnitName.Command.UnitModeChangeRequest Bool gvb_Cmd_UnitModeChangeRequest Bit
UnitName.Command.MachSpeed Real gvl_Cmd_MachSpeed FLOAT (Double Precision)

UnitName.Command.MaterialInterlock Bool Structure gvdu_Cmd_MaterialInterlocks Double Word[Unsigned]/Bit
String[32-bit]

UnitName.Command.CntrlCmd Int (32bit) gvd_Cmd_CntrlCmd Double Word[Signed]
UnitName.Command.CmdChangeRequest Bool gvb_Cmd_CmdChangeRequest Bit
UnitName.Command.RemoteInterface[#].Number Int (32bit) gvda_Cmd_Number_RemInt[#] Double Word[Signed](0..9)
UnitName.Command.RemoteInterface[#].ControlCmdNumber Int (32bit) gvda_Cmd_CntlCmdNum_RemIntf[#] Double Word[Signed](0..9)
UnitName.Command.RemoteInterface[#].CmdValue Int (32bit) gvda_Cmd_CmdValue_RemIntf[#] Double Word[Signed](0..9)

UnitName.Command.RemoteInterface[#].Parameter[#] Descriptor Structure gvsta_Cmd_RemIntf[#] PackML_Cmd_RemIntf_Type_SDT(0..
9)

UnitName.Command.RemoteInterface[#].Parameter[#].ID Int (32bit) gvsta_Cmd_RemIntf[#].da_ID_Para[#] Double Word[Signed](0..9)

UnitName.Command.RemoteInterface[#].Parameter[#].Name String gvsta_Cmd_RemIntf[#].sa_Name_Para[
#] String(34)(0..9)

UnitName.Command.RemoteInterface[#].Parameter[#].Unit String gvsta_Cmd_RemIntf[#].sa_Unit_Para[#
] String(34)(0..9)

UnitName.Command.RemoteInterface[#].Parameter[#].Value Real gvsta_Cmd_RemIntf[#].la_Value_Para[
#] FLOAT (Double Precision)(0..9)

UnitName.Command.Parameter[#] Descriptor Structure gvsta_Cmd_Parameter[#] PackML_Cmd_Parameter_SDT(0..9)
UnitName.Command.Parameter[#].ID Int (32bit) gvsta_Cmd_Parameter[#].d_ID Double Word[Signed]
UnitName.Command.Parameter[#].Name String gvsta_Cmd_Parameter[#].s_Name String(32)
UnitName.Command.Parameter[#].Unit String gvsta_Cmd_Parameter[#].s_Unit String(32)
UnitName.Command.Parameter[#].Value User Defined gvsta_Cmd_Parameter[#].l_Value FLOAT (Double Precision)
UnitName.Command.Product[#] Product Structure gvsta_Cmd_Pdt[#] PackML_Cmd_Pdt_Type_SDT(0..4)
UnitName.Command.Product[#].ProductID Int (32bit) gvsta_Cmd_PdtID_Pdt[#] Double Word[Signed](0..4)
UnitName.Command.Product[#].ProcessVariables[#].ID Int (32bit) gvsta_Cmd_Pdt[#].da_ID_ProVar[#] Double Word[Signed](0..9)
UnitName.Command.Product[#].ProcessVariables[#].Name String gvsta_Cmd_Pdt[#].sa_Name_ProVar[#] String(34)(0..9)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 23 Engineering Group

UnitName.Command.Product[#].ProcessVariables[#].Unit String gvsta_Cmd_Pdt[#].sa_Unit_ProVar[#] String(34)(0..9)
UnitName.Command.Product[#].ProcessVariables[#].Value Real Cmd_Pdt[#].la_Value_ProVar[#] FLOAT (Double Precision)(0..9)

UnitName.Command.Product[#].Ingredients[#].IngredientID Int (32bit) Cmd_Pdt[#].da_IngID_Ings[#] Double Word[Signed](0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].ID Int (32bit) Cmd_Pdt[#].da_ID_Ings_Para[#,#] Double Word[Signed](0..9,0..9)
UnitName.Command.Product[#].Ingredients[#].Parameter[#].Na
me String Cmd_Pdt[#].sa_Name_Ings_Para[#,#] String(34)(0..9,0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].Un
it String Cmd_Pdt[#].sa_Unit_Ings_Para[#,#] String(34)(0..9,0..9)

UnitName.Command.Product[#].Ingredients[#].Parameter[#].Va
lue Real Cmd_Pdt[#].la_Value_Ings_Para[#,#] FLOAT (Double Precision)(0..9,0..9)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 24 Engineering Group

A.3 Status Tags – Spec to GX Works2 Labels

PackTag Specification GX Works 2 Labels
Tags Data Type Label Data Type

UnitName.Status.UnitModeCurrent Int (32bit) gvd_Sta_UnitModeCurrent Double Word[Signed]
UnitName.Status.UnitModeRequested Bool gvb_Sta_UnitModeChangeRequested Bit
UnitName.Status.UnitModeChangeInProcess Bool gvb_Sta_UnitModeChangeInProcess Bit
UnitName.Status.StateCurrent Int (32bit) gvd_Sta_StateCurrent Double Word[Signed]
UnitName.Status.StateRequested Int (32bit) gvd_Sta_StateRequested Double Word[Signed]
UnitName.Status.StateChangeInProcess Bool gvb_Sta_StateChangeInProcess Bit
UnitName.Status.MachSpeed Real gvl_Sta_MachSpeed FLOAT (Double Precision)
UnitName.Status.CurMachSpeed Real gvl_Sta_CurMachSpeed FLOAT (Double Precision)

UnitName.Status.MaterialInterlock Bool Array [32] gvdu_Sta_MaterialInterlocks Double Word[Unsigned]/Bit
String[32-bit]

UnitName.Status.EquipmentInterlock Bool Structure [2] gvst_Sta_EquipmentInterlock PackML_Sta_EquipInterlock_
SDT

UnitName.Status.EquipmentInterlock.Blocked Bool gvst_Sta_EquipmentInterlock.b_Blocked Bit
UnitName.Status.EquipmentInterlock.Starved Bool gvst_Sta_EquipmentInterlock.b_Starved Bit
UnitName.Status.RemoteInterface[#].Number Int (32bit) gvda_Sta_Number_RemInt Double Word[Signed](0..9)
UnitName.Status.RemoteInterface[#].ControlCmdNumber Int (32bit) gvda_Sta_CntlCmdNum_RemIntf Double Word[Signed](0..9)
UnitName.Status.RemoteInterface[#].CmdValue Int (32bit) gvda_Sta_CmdValue_RemIntf Double Word[Signed](0..9)

UnitName.Status.RemoteInterface[#].Parameter[#] Descriptor Structure gvsta_Sta_RemIntf[#] PackML_Sta_RemIntf_Type_
SDT(0..9)

UnitName.Status.RemoteInterface[#].Parameter[#].ID Int (32bit) gvsta_Sta_RemIntf[#].da_ID_Para[#] Double Word[Signed](0..9)
UnitName.Status.RemoteInterface[#].Parameter[#].Name String gvsta_Sta_RemIntf[#].sa_Name_Para[#] String(34)(0..9)
UnitName.Status.RemoteInterface[#].Parameter[#].Unit String gvsta_Sta_RemIntf[#].sa_Unit[#] String(34)(0..9)

UnitName.Status.RemoteInterface[#].Parameter[#].Value Real gvsta_Sta_RemIntf[#].la_Value[#] FLOAT (Double
Precision)(0..9)

UnitName.Status.Parameter[#] Descriptor Structure gvsta_Sta_Parameter[#] PackML_Sta_Parameter_SDT
(0..9)

UnitName.Status.Parameter[#].ID Int (32bit) gvsta_Sta_Parameter[#].d_ID Double Word[Signed]
UnitName.Status.Parameter[#].Name String gvsta_Sta_Parameter[#].s_Name String(32)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 25 Engineering Group

UnitName.Status.Parameter[#].Unit String gvsta_Sta_Parameter[#].s_Unit String(32)
UnitName.Status.Parameter[#].Value User Defined gvsta_Sta_Parameter[#].l_Value FLOAT (Double Precision)

UnitName.Status.Product[#] Product Structure gvsta_Sta_Pdt[#] PackML_Sta_Pdt_Type_SDT(
0..4)

UnitName.Status.Product[#].ProductID Int (32bit) gvsta_Sta_PdtID_Pdt[#] Double Word[Signed](0..4)
UnitName.Status.Product[#].ProcessVariables[#].ID Int (32bit) gvsta_Sta_Pdt[#].da_ID_ProVar Double Word[Signed](0..9)
UnitName.Status.Product[#].ProcessVariables[#].Name String gvsta_Sta_Pdt[#].sa_Name_ProVar String(34)(0..9)
UnitName.Status.Product[#].ProcessVariables[#].Unit String gvsta_Sta_Pdt[#].sa_Unit_ProVar String(34)(0..9)

UnitName.Status.Product[#].ProcessVariables[#].Value Real gvsta_Sta_Pdt[#].la_Value_ProVar FLOAT (Double
Precision)(0..9)

UnitName.Status.Product[#].Ingredients[#].IngredientID Int (32bit) gvsta_Sta_Pdt[#].da_IngID_Ings Double Word[Signed](0..9)

UnitName.Status.Product[#].Ingredients[#].Parameter[#].ID Int (32bit) gvsta_Sta_Pdt[#].da_ID_Ings_Para[#,#] Double
Word[Signed](0..9,0..9)

UnitName.Status.Product[#].Ingredients[#].Parameter[#].Name String gvsta_Sta_Pdt[#].sa_Name_Ings_Para[#,#] String(34)(0..9,0..9)
UnitName.Status.Product[#].Ingredients[#].Parameter[#].Unit String gvsta_Sta_Pdt[#].sa_Unit_Ings_Para[#,#] String(34)(0..9,0..9)

UnitName.Status.Product[#].Ingredients[#].Parameter[#].Value Real gvsta_Sta_Pdt[#].la_Value_Ings_Para[#,#] FLOAT (Double
Precision)(0..9,0..9)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 26 Engineering Group

A.4 Status Tags –GX Works2 Labels to Kepware Tags

Command Tags –GX Works2 Labels to Kepware Tags
 GX Works 2 Labels Kepware Tags

Label Data Type Tags Data Type
Sta_UnitModeCurrent Double Word[Signed]
Sta_UnitModeChangeRequested Bit
Sta_UnitModeChangeInProcess Bit
Sta_StateCurrent Double Word[Signed]
Sta_StateRequested Double Word[Signed]
Sta_StateChangeInProcess Bit
Sta_MachSpeed FLOAT (Double Precision)
Sta_CurMachSpeed FLOAT (Double Precision)
Sta_MaterialInterlocks Double Word[Unsigned]/Bit String[32-bit]
Sta_EquipmentInterlock SDT_Sta_EquipInterlock
Sta_EquipmentInterlock.Blocked Bit
Sta_EquipmentInterlock.Starved Bit
Sta_Number_RemInt Double Word[Signed](0..9)
Sta_CntlCmdNum_RemIntf Double Word[Signed](0..9)
Sta_CmdValue_RemIntf Double Word[Signed](0..9)
Sta_RemIntf[#] Sta_RemIntf_Type(0..9)
Sta_RemIntf[#].ID_Para[#] Double Word[Signed](0..9)
Sta_RemIntf[#].Name_Para[#] String(34)(0..9)
Sta_RemIntf[#].Unit[#] String(34)(0..9)
Sta_RemIntf[#].Value[#] FLOAT (Double Precision)(0..9)
Sta_Parameter[#] SDT_Sta_Parameter(0..9)
Sta_Parameter[#].ID Double Word[Signed]
Sta_Parameter[#].Name String(32)
Sta_Parameter[#].Unit String(32)
Sta_Parameter[#].Value FLOAT (Double Precision)
Sta_Pdt[#] Sta_Pdt_Type(0..4)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 27 Engineering Group

Sta_PdtID_Pdt[#] Double Word[Signed](0..4)

Sta_Pdt[#].ID_ProVar Double Word[Signed](0..9)
Sta_Pdt[#].Name_ProVar String(34)(0..9)
Sta_Pdt[#].Unit_ProVar String(34)(0..9)
Sta_Pdt[#].Value_ProVar FLOAT (Double Precision)(0..9)

Sta_Pdt[#].IngID_Ings Double Word[Signed](0..9)

ID_Ings_Para[#,#] Double Word[Signed](0..9,0..9)
Sta_Pdt[#].Name_Ings_Para[#,#] String(34)(0..9,0..9)
Sta_Pdt[#].Unit_Ings_Para[#,#] String(34)(0..9,0..9)
Sta_Pdt[#].Value_Ings_Para[#,#] FLOAT (Double Precision)(0..9,0..9)
Sta_Pdt.Value_Ings_Para FLOAT (Double Precision)(0..9,0..9)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 28 Engineering Group

A.5 Admin Tags – Spec to GX Works2 Labels

PackTag Specification GX Works 2 Labels
Tags Data Type Label Data Type

UnitName.Admin.Parameter[#] Descriptor
Structure gvst_Adm_Parameter PackML_Admin_Parameter_SDT

UnitName.Admin.Parameter[#].ID Int (32bit) gvst_Adm_Parameter[#].d_ID Double Word[Signed]
UnitName.Admin.Parameter[#].Name String gvst_Adm_Parameter[#].s_Name String(32)
UnitName.Admin.Parameter[#].Unit String gvst_Adm_Parameter[#].s_Unit String(32)
UnitName.Admin.Parameter[#].Value Real gvst_Adm_Parameter[#].l_Value FLOAT (Double Precision)
UnitName.Admin.Alarm[#] Alarm Structure gvsta_Adm_Alarm[#] PackML_Admin_Alarm_SDT(0..255)
UnitName.Admin.Alarm[#].Trigger Bool gvsta_Adm_Alarm[#].b_Trigger Bit
UnitName.Admin.Alarm[#].ID Int (32bit) gvsta_Adm_Alarm[#].d_ID Double Word[Signed]
UnitName.Admin.Alarm[#].Value Int (32bit) gvsta_Adm_Alarm[#].d_Value Double Word[Signed]
UnitName.Admin.Alarm[#].Message String gvsta_Adm_Alarm[#].s_Message String(32)

UnitName.Admin.Alarm[#].Category (Event Grouping) Int (32bit) gvsta_Adm_Alarm[#].d_Category Double Word[Signed]

UnitName.Admin.Alarm[#].DateTime[0] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].DateTime[1] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].DateTime[2] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].DateTime[3] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].DateTime[4] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].DateTime[5] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].DateTime[6] Int (32bit) gvsta_Adm_Alarm[#].wu_DateTime[6] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[0] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[1] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[2] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[3] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[4] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[5] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Alarm[#].AckDateTime[6] Int (32bit) gvsta_Adm_Alarm[#].wu_AckDateTime[6] Word[Unsigned]/Bit String[16-bit]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 29 Engineering Group

UnitName.Admin.AlarmExtent Int(32bit) gvd_Adm_AlarmExtent Double Word[Signed]
UnitName.Admin.AlarmHistory[#] Alarm Structure gvst_Adm_AlarmHistory[#] SDT_Admin_Alarm(0..255)
UnitName.Admin.AlarmHistory[#].Trigger Bool gvst_Adm_AlarmHistory[#].b_Trigger Bit
UnitName.Admin.AlarmHistory[#].ID Int (32bit) gvst_Adm_AlarmHistory[#].d_ID Double Word[Signed]
UnitName.Admin.AlarmHistory[#].Value Int (32bit) gvst_Adm_AlarmHistory[#].d_Value Double Word[Signed]
UnitName.Admin.AlarmHistory[#].Message String gvst_Adm_AlarmHistory[#].s_Message String(32)

UnitName.Admin.AlarmHistory[#].Category (Event
Grouping) Int (32bit) gvst_Adm_AlarmHistory[#].d_Category Double Word[Signed]

UnitName.Admin.AlarmHistory[#].DateTime[0] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.AlarmHistory[#].DateTime[1] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.AlarmHistory[#].DateTime[2] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.AlarmHistory[#].DateTime[3] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.AlarmHistory[#].DateTime[4] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.AlarmHistory[#].DateTime[5] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.AlarmHistory[#].DateTime[6] Int (32bit) gvst_Adm_AlarmHistory[#].wu_DateTime[6] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[0] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[0] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[1] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[1] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[2] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[2] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[3] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[3] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[4] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[4] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[5] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[5] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistory[#].AckDateTime[6] Int (32bit) gvst_Adm_AlarmHistory[#].wu_AckDateTime[6] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.AlarmHistoryExtent Int (32bit) gvd_Adm_AlarmStopReasonExtent Double Word[Signed]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 30 Engineering Group

UnitName.Admin.StopReason Alarm Structure gvst_Adm_AlarmStopReason PackML_Admin_Alarm_SDT
UnitName.Admin.StopReason.Trigger Bool gvst_Adm_AlarmStopReason.b_Trigger Bit
UnitName.Admin.StopReason.ID Int (32bit) gvst_Adm_AlarmStopReason.d_ID Double Word[Signed]
UnitName.Admin.StopReason.Value Int (32bit) gvst_Adm_AlarmStopReason.d_Value Double Word[Signed]
UnitName.Admin.StopReason.Message String gvst_Adm_AlarmStopReason.s_Message String(32)

UnitName.Admin.StopReason.Category (Event
Grouping) Int (32bit) gvst_Adm_AlarmStopReason.d_Category Double Word[Signed]

UnitName.Admin.StopReason[#].DateTime[0] Int (32bit) gvst_Adm_AlarmStopReason.wu_DateTime[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.StopReason[#].DateTime[1] Int (32bit) gvst_Adm_AlarmStopReason. wu_DateTime[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.StopReason[#].DateTime[2] Int (32bit) gvst_Adm_AlarmStopReason. wu_DateTime[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.StopReason[#].DateTime[3] Int (32bit) gvst_Adm_AlarmStopReason. wu_DateTime[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.StopReason[#].DateTime[4] Int (32bit) gvst_Adm_AlarmStopReason. wu_DateTime[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.StopReason[#].DateTime[5] Int (32bit) gvst_Adm_AlarmStopReason. wu_DateTime[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.StopReason[#].DateTime[6] Int (32bit) gvst_Adm_AlarmStopReason. wu_DateTime[6] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[0] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[0
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[1] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[1
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[2] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[2
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[3] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[3
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[4] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[4
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[5] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[5
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReason[#].AckDateTime[6] Int (32bit) gvst_Adm_AlarmStopReason[#].wu_AckDateTime[6
] Word[Unsigned]/Bit String[16-bit]

UnitName.Admin.StopReasonExtent Int (32bit) gvd_Adm_AlarmStopReasonExtent Double Word[Signed]
UnitName.Admin.Warning[#] Alarm Structure gvst_Adm_AlarmWarning[#] PackML_Admin_Alarm_SDT
UnitName.Admin.Warning[#].Trigger Bool gvst_Adm_AlarmWarning[#].b_Trigger Bit
UnitName.Admin.Warning[#].ID Int (32bit) gvst_Adm_AlarmWarning[#].d_ID Double Word[Signed]
UnitName.Admin.Warning[#].Value Int (32bit) gvst_Adm_AlarmWarning[#].d_Value Double Word[Signed]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 31 Engineering Group

UnitName.Admin.Warning[#].Message String gvst_Adm_AlarmWarning[#].s_Message String(32)

UnitName.Admin.Warning[#].Category (Event Grouping) Int (32bit) gvst_Adm_AlarmWarning[#].d_Category Double Word[Signed]

UnitName.Admin.Warning[#].DateTime[0] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].DateTime[1] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].DateTime[2] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].DateTime[3] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].DateTime[4] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].DateTime[5] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].DateTime[6] Int (32bit) gvst_Adm_AlarmWarning[#].wu_DateTime[6] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[0] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[1] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[2] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[3] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[4] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[5] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.Warning[#].AckDateTime[6] Int (32bit) gvst_Adm_AlarmWarning[#].wu_AckDateTime[6] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.WarningExtent Int (32bit) gvd_Adm_AlarmWarningExtent Double Word[Signed]
UnitName.Admin.ModeCurrentTime[#] Int (32bit) gvda_Adm_ModeCurrentTime[#] Double Word[Signed](0..31)
UnitName.Admin.ModeCumulativeTime[#] Int (32bit) gvda_Adm_ModeCumulativeTime[#] Double Word[Signed](0..31)

UnitName.Admin.StateCurrentTime[#,#] (Mode,State) Int (32bit) gvda_Adm_StateCurrentTime[#,#] Double Word[Signed](0..31,0..17)

UnitName.Admin.StateCumulativeTime[#,#]
(Mode,State) Int (32bit) gvda_Adm_StateCumulativeTime[#,#] Double Word[Signed](0..31,0..17)

UnitName.Admin.ProdConsumedCount[#] Count Structure gvsta_Adm_ProdConsumedCnt[#] PackML_Admin_Count_SDT(0..9)
UnitName.Admin.ProdConsumedCount[#].ID Int(32bit) gvsta_Adm_ProdConsumedCnt[#].d_ID Double Word[Signed]
UnitName.Admin.ProdConsumedCount[#].Name String gvsta_Adm_ProdConsumedCnt[#].s_Name String(32)
UnitName.Admin.ProdConsumedCount[#].Unit String gvsta_Adm_ProdConsumedCnt[#].s_Unit String(32)
UnitName.Admin.ProdConsumedCount[#].Count Int(32bit) gvsta_Adm_ProdConsumedCnt[#].d_Count Double Word[Signed]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 32 Engineering Group

UnitName.Admin.ProdConsumedCount[#].AccCount Int(32bit) gvsta_Adm_ProdConsumedCnt[#].d_AccCount Double Word[Signed]

UnitName.Admin.ProdProcessedCount[#] Count Structure gvsta_Adm_ProdProcessedCnt[#] PackML_Admin_Count_SDT(0..9)
UnitName.Admin.ProdProcessedCount[#].ID Int(32bit) gvsta_Adm_ProdProcessedCnt[#].d_ID Double Word[Signed]
UnitName.Admin.ProdProcessedCount[#].Name String gvsta_Adm_ProdProcessedCnt[#].s_Name String(32)
UnitName.Admin.ProdProcessedCount[#].Unit String gvsta_Adm_ProdProcessedCnt[#].s_Unit String(32)
UnitName.Admin.ProdProcessedCount[#].Count Int(32bit) gvsta_Adm_ProdProcessedCnt[#].d_Count Double Word[Signed]

UnitName.Admin.ProdProcessedCount[#].AccCount Int(32bit) gvsta_Adm_ProdProcessedCnt[#].d_AccCount Double Word[Signed]

UnitName.Admin.ProdDefectiveCount[#] Count Structure gvsta_Adm_ProdDefectiveCnt[#] PackML_Admin_Count_SDT(0..9)
UnitName.Admin.ProdDefectiveCount[#].ID Int(32bit) gvsta_Adm_ProdDefectiveCnt[#].d_ID Double Word[Signed]
UnitName.Admin.ProdDefectiveCount[#].Name String gvsta_Adm_ProdDefectiveCnt[#].s_Name String(32)
UnitName.Admin.ProdDefectiveCount[#].Unit String gvsta_Adm_ProdDefectiveCnt[#].s_Unit String(32)
UnitName.Admin.ProdDefectiveCount[#].Count Int(32bit) gvsta_Adm_ProdDefectiveCnt[#].d_Count Double Word[Signed]

UnitName.Admin.ProdDefectiveCount[#].AccCount Int(32bit) gvsta_Adm_ProdDefectiveCnt[#].d_AccCount Double Word[Signed]

UnitName.Admin.AccTimeSinceReset Int(32bit) gvsta_Adm_AccTimeSinceReset Double Word[Signed]
UnitName.Admin.MachDesignSpeed Real gvsta_Adm_MachDesignSpeed FLOAT (Double Precision)
UnitName.Admin.StatesDisabled Int(32bit) gvsta_Adm_StatesDisabled Double Word[Signed]

UnitName.Admin.PLCDateTime Date-Time Array gvwa_Adm_PLCDateTime_Date Word[Unsigned]/Bit String[16-
bit](0..6)

UnitName.Admin.PLCDateTime[0] Int (32bit) gvwa_Adm_PLCDateTime_Date[0] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.PLCDateTime[1] Int (32bit) gvwa_Adm_PLCDateTime_Date[1] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.PLCDateTime[2] Int (32bit) gvwa_Adm_PLCDateTime_Date[2] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.PLCDateTime[3] Int (32bit) gvwa_Adm_PLCDateTime_Date[3] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.PLCDateTime[4] Int (32bit) gvwa_Adm_PLCDateTime_Date[4] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.PLCDateTime[5] Int (32bit) gvwa_Adm_PLCDateTime_Date[5] Word[Unsigned]/Bit String[16-bit]
UnitName.Admin.PLCDateTime[6] Int (32bit) gvwa_Adm_PLCDateTime_Date[6] Word[Unsigned]/Bit String[16-bit]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 33 Engineering Group

A.6 Admin Tags –GX Works2 Labels to Kepware Tags

GX Works 2 Labels Kepware Tags
Label Data Type Tags Data Type

Adm_Parameter SDT_Admin_Parameter(0..19)
Adm_Parameter[#].ID Double Word[Signed]
Adm_Parameter[#].Name String(32)
Adm_Parameter[#].Unit String(32)
Adm_Parameter[#].Value FLOAT (Double Precision)
Adm_Alarm[#] SDT_Admin_Alarm(0..255)
Adm_Alarm[#].Trigger Bit
Adm_Alarm[#].ID Double Word[Signed]
Adm_Alarm[#].Value Double Word[Signed]
Adm_Alarm[#].Message String(32)
Adm_Alarm[#].Category Double Word[Signed]
Adm_Alarm[#].DateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].DateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].DateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].DateTime[3] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].DateTime[4] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].DateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].DateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].AckDateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].AckDateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].AckDateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].AckDateTime[3] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].AckDateTime[4] Word[Unsigned]/Bit String[16-bit]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 34 Engineering Group

Adm_Alarm[#].AckDateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_Alarm[#].AckDateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmExtent Double Word[Signed]
Adm_AlarmHistory[#] SDT_Admin_Alarm(0..255)
Adm_AlarmHistory[#].Trigger Bit
Adm_AlarmHistory[#].ID Double Word[Signed]
Adm_AlarmHistory[#].Value Double Word[Signed]
Adm_AlarmHistory[#].Message String(32)
Adm_AlarmHistory[#].Category Double Word[Signed]
Adm_AlarmHistory[#].DateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].DateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].DateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].DateTime[3] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].DateTime[4] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].DateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].DateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[3] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[4] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmHistory[#].AckDateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReasonExtent Double Word[Signed]
Adm_AlarmStopReason SDT_Admin_Alarm
Adm_AlarmStopReason.Trigger Bit
Adm_AlarmStopReason.ID Double Word[Signed]
Adm_AlarmStopReason.Value Double Word[Signed]
Adm_AlarmStopReason.Message String(32)
Adm_AlarmStopReason.Category Double Word[Signed]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 35 Engineering Group

Adm_AlarmStopReason.DateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason.DateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason.DateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason.DateTime[3] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason.DateTime[4] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason.DateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason.DateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmStopReason[#].AckDateTime[0
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReason[#].AckDateTime[1
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReason[#].AckDateTime[2
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReason[#].AckDateTime[3
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReason[#].AckDateTime[4
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReason[#].AckDateTime[5
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReason[#].AckDateTime[6
] Word[Unsigned]/Bit String[16-bit]

Adm_AlarmStopReasonExtent Double Word[Signed]
Adm_AlarmWarning[#] SDT_Admin_Alarm(0..255)
Adm_AlarmWarning[#].Trigger Bit
Adm_AlarmWarning[#].ID Double Word[Signed]
Adm_AlarmWarning[#].Value Double Word[Signed]
Adm_AlarmWarning[#].Message String(32)
Adm_AlarmWarning[#].Category Double Word[Signed]
Adm_AlarmWarning[#].DateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].DateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].DateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].DateTime[3] Word[Unsigned]/Bit String[16-bit]

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 36 Engineering Group

Adm_AlarmWarning[#].DateTime[4] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].DateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].DateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[0] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[1] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[2] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[3] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[4] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[5] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarning[#].AckDateTime[6] Word[Unsigned]/Bit String[16-bit]
Adm_AlarmWarningExtent Double Word[Signed]
Adm_ModeCurrentTime[#] Double Word[Signed](0..31)
Adm_ModeCumulativeTime[#] Double Word[Signed](0..31)
Adm_StateCurrentTime[#,#] Double Word[Signed](0..31,0..17)
Adm_StateCumulativeTime[#,#] Double Word[Signed](0..31,0..17)
Adm_ProdConsumedCnt[#] SDT_Admin_Count(0..9)
Adm_ProdConsumedCnt[#].ID Double Word[Signed]
Adm_ProdConsumedCnt[#].Name String(32)
Adm_ProdConsumedCnt[#].Unit String(32)
Adm_ProdConsumedCnt[#].Count Double Word[Signed]
Adm_ProdConsumedCnt[#].AccCount Double Word[Signed]
Adm_ProdProcessedCnt[#] SDT_Admin_Count(0..9)
Adm_ProdProcessedCnt[#].ID Double Word[Signed]
Adm_ProdProcessedCnt[#].Name String(32)
Adm_ProdProcessedCnt[#].Unit String(32)
Adm_ProdProcessedCnt[#].Count Double Word[Signed]
Adm_ProdProcessedCnt[#].AccCount Double Word[Signed]
Adm_ProdDefectiveCnt[#] SDT_Admin_Count(0..9)
Adm_ProdDefectiveCnt[#].ID Double Word[Signed]
Adm_ProdDefectiveCnt[#].Name String(32)

 Mitsubishi PackML Template Implementations – Release 2
Part 3: PackTags Design and Implementation

Part 3 – Page 37 Engineering Group

Adm_ProdDefectiveCnt[#].Unit String(32)
Adm_ProdDefectiveCnt[#].Count Double Word[Signed]
Adm_ProdDefectiveCnt[#].AccCount Double Word[Signed]
Adm_AccTimeSinceReset Double Word[Signed]
Adm_MachDesignSpeed FLOAT (Double Precision)
Adm_StatesDisabled Double Word[Signed]
Adm_PLCDateTime_Date Word[Unsigned]/Bit String[16-bit](0..6)
Adm_PLCDateTime_Date[0] Word[Unsigned]/Bit String[16-bit]
Adm_PLCDateTime_Date[1] Word[Unsigned]/Bit String[16-bit]
Adm_PLCDateTime_Date[2] Word[Unsigned]/Bit String[16-bit]
Adm_PLCDateTime_Date[3] Word[Unsigned]/Bit String[16-bit]
Adm_PLCDateTime_Date[4] Word[Unsigned]/Bit String[16-bit]
Adm_PLCDateTime_Date[5] Word[Unsigned]/Bit String[16-bit]
Adm_PLCDateTime_Date[6] Word[Unsigned]/Bit String[16-bit]

Release 3, Version 5

Engineering Group

Users Guide

OEM PackML Implementation Templates
Part 4 – PackML Library and Core Function Blocks

 Part 4 – i Custom Solutions Center Engineering Group

Content

1 Introduction ... 1

2 Overview of PackML Library .. 1

2.1 PackML Library Items ... 2

2.2 Installing the PackML User Library ... 2

2.3 PackML User Library Help .. 4

3 Overview of PackML State and Mode Core Function Blocks ... 7

4 Function Block: PackML_ModeStateManager ... 8

4.1 Description ... 8

4.2 Function Block Operations ... 8

4.3 Function Block Local Variables ... 9

5 Function Block: PackML_ModeStateTimes .. 12

5.1 Description ... 12

5.2 Timer_32Bit_Sec Function Block .. 12

5.3 Function Block Operations ... 13

5.4 Function Block Local Variables ... 13

7 Example Use of the PackML Function Blocks .. 16

7.1 Initialization Example ... 16

7.2 Example of Calling Function Blocks .. 19

 Part 4 – ii Custom Solutions Center Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R2 V1.1 August 12, 2010 Minor corrections of figure and heading reference errors.

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 1 Custom Solutions Center Engineering Group

1 Introduction
The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackML specification in an iQ PLC.

PackML specification is a part of the overall OMAC PackML standard and consists of PackTags and PacKML State Engine
definitions. PackTags defines a set of named data elements used for open architecture, interoperable data exchange in
automated machinery. PackTags are useful for machine-to-machine (inter-machine) communications; for example between
a Filler and a Capper. PackTags can also be used for data exchange between machines and higher-level information systems
like Manufacturing Operations Management and Enterprise Information Systems. PackML State Engine defines common
procedural programming structures, consistent mode and state definitions that drive a common look and feel between
equipment.

The Mitsubishi design of PackTags is documented in Part 3 of this Users Guide. This document describes PackML Library and
the implementation of four Mitsubishi PackML core function blocks that handle the PackML Machine State Transitions,
Mode Manager, State and Mode Timers, State Disable Set and State Transition Set

The function blocks are implemented using Mitsubishi GX Works2 Structured Ladder Programming language and label
programming methods.

2 Overview of PackML Library
PackML Library is a GX Works 2 “User Library” that contains all the four core PackML function blocks and the PackTags. This
allows users to simply install the “PackML_R3_V1.sul” library file to a new or an existing project to be able to access the
PackTags labels and function blocks.

Figure 1: PackML Library

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 2 Custom Solutions Center Engineering Group

2.1 PackML Library Items
The PackML Library contains the following global label groups:

- PackML_PackTags_Admin

- PackML_PackTags_Command

- PackML_PackTags_Status

The following function blocks are part of the library:

- PackML_ModeStateManager

- PackML_ModeStateTimes

- PackML_StateDisable_Set

- PackML_StateTransition_Set

Structured data types associated with the PackML_PackTags labels are declared here

- PackML_Admin_Alarm_SDT

- PackML_Admin_Count_SDT

- PackML_Admin_Parameter_SDT

- PackML_Cmd_Paramter_SDT

- PackML_Cmd_Pdt_Type_SDT

- PackML_Cmd_RemIntf_SDT

- PackML_Module_Cmd_SDT

- PackML_Sta_EquipInterlock_SDT

- PackML_Sta_Parameter_SDT

- PackML_Sta_Pdt_Type

- PackML_Sta_RemIntf_Type_SDT

2.2 Installing the PackML User Library
To install a user library, switch to the User Library view in the project Navigation Window.

While in the User Library view, either select the ”Install” option in the Project ⇒ Library menu or click on the down arrow of
the New Library button and select ”Install”.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 3 Custom Solutions Center Engineering Group

Figure 2: PackML Library Install

In the Install Library dialog window press the ”Browse...” button and select the *.sul user library file in its current location.
After the selection of the library file, press the OK button to install the library.

Figure 3: Library Selection

Once the library is successfully installed, it is possible to use the provided function blocks in the project.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 4 Custom Solutions Center Engineering Group

2.3 PackML User Library Help
The PackML Library also contains a help file that can be associated to display the help from the GX Works2 programming
software. When using any of the function blocks, the user can select one of the function library blocks and press “F1” to
bring up help for that specific function block. The help file “PackML R3 V1.CHM” is included in the library. To associate this
file to the library function blocks, follow the procedure below.

Select the library and right-click on it. In the displayed menu, select "Open" to open the library for editing.

Figure 4: Library Selection

Once the library is open, select it again and righ-click on it. In the displayed menu, select "Property..." to display the current
library properties (Title, associated help file, library comment).

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 5 Custom Solutions Center Engineering Group

Figure 5: Library Property

In the Property screen, click the "Browse" button and select the HTML Help file that will be associated to the library, then
click the "OK" button to register the new settings.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 6 Custom Solutions Center Engineering Group

Figure 6: Help file selection

To display the help file for a library, whether it is open for editing or closed, in the User Library view, select the library and
right-click on it. In the displayed menu, select "Help..." to open the associated help file and view the contained information.

To use the help file, drop the FB in the program, select the FB and then press F1 to bring up the help menu.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 7 Custom Solutions Center Engineering Group

Figure 7: Help Menu

3 Overview of PackML State and Mode Core Function Blocks
There are two key Mitsubishi PackML State and Mode core function blocks included with the library:

• PackML_ModeStateManager

• PackML_ModeStateTimes

There are also two additional function blocks for setting up the states and transitions.

The two key functions of the PackML_ModeStateManger are: (1) transitioning the machine from current state to the proper
next state based on external commands and state completion status, and (2) handling the transitions of machine modes.
The PackML_ModeStateTimes (1) accumulates the current and accumulated time of the machine in each mode and state,
and (2) provides the timer values and stores them in appropriate PackTags.

These function blocks, together with their associated global and local labels, are packaged in the overall Mitsubishi PackML
OEM Implementation template project.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 8 Custom Solutions Center Engineering Group

4 Function Block: PackML_ModeStateManager
4.1 Description
The PackML_ModeStateManager handles the state and mode transitions of a unit machine according to the State and
Mode Models defined in the OMAC PackML specification.

To use this Function Block properly in an OEM program, one should ensure the following requirements are satisfied:

1. When an OEM programs a machine to use the PackML Function Blocks, it should initialize the machine to start
up with the machine mode set to 3, the Manual Mode condition, and the state to be at the “Stopped” stage
during the first scan of the PLC.

2. When an OEM designs the machine, he should determine how many modes the machine will have and how
many and what states each mode should have. The selection of modes and states should follow the OMAC
PackML Standard when appropriate. Each mode, when defined, should have at least three states: Stopped,
Execute, Aborted.

3. Since not all states are configured for all modes, the OEM is responsible for setting up which states are not
configured for each mode. He is also responsible for setting up at which states the machine is allowed to
change mode. Refer to Part 6 Section 5.1.1 of the Users Guide for more details.

4. The OEM is also responsible for configuring the names of all modes and states. Refer to Part 6 Section 5.1.1 of
the Users Guide for more details.

5. When this FB is used in an OEM program, it is preferable that the FB is always enabled.

6. The label “PackML” is a structured data type and its members should be properly defined before the FB is
called.

4.2 Function Block Operations
The main functions of the FB consist of (1) managing state transitions, (2) managing mode transitions, and (3) updating
current mode and state information.

When the FB is first call, it determines the current state of the machine and whether there is a valid command to
transition the machine to a new state. If a valid command is set, the machine will be transitioned to the valid new state
and the corresponding output bit will be set to reflect the new current state.

The FB will then examine any mode change command is set. It will verify the machine is in the proper mode and state
that a change of mode is allowed. If the mode change command is not valid, the ModeChangeNotAllowed output will
be set high for 3 seconds and then reset. The mode and state of the unit machine will remain in the current mode and
state respectively.

The FB finally updates the current mode and state information and exit to the FB calling programs.

The PackML_ModeStateManager Function Block is shown in the figure below:

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 9 Custom Solutions Center Engineering Group

Figure 8 PackML_ModeStateManager Function Block with Inputs and Outputs

4.3 Function Block Local Variables
The local variables that are used by the FB are described in this section. There are three types of local variables:

• Input Variables – The values of these variables need to be properly set / defined by connecting proper logic or
variable inputs to the FB before execution.

• Output Variables – The values of these variables will be properly set or defined after the execution of the FB is
completed. If a user of the FB can chose not to use the results of the output variables.

• Variables – Those labels used internally in the FB that will not be exposed externally.

Variable Type Variable Label Data
Type

Description

VAR_OUTPUT ob_FB_Clearing Bit When the bit is set, the Machine is in the “Clearing” State

VAR_OUTPUT ob_FB_Stopped Bit When the bit is set, the Machine is in the “Stopped” State

VAR_OUTPUT ob_FB_Starting Bit When the bit is set, the Machine is in the “Starting” State

VAR_OUTPUT ob_FB_Idle Bit When the bit is set, the Machine is in the “Idle” State

VAR_OUTPUT ob_FB_Suspended Bit When the bit is set, the Machine is in the “Suspended” State

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 10 Custom Solutions Center Engineering Group

Variable Type Variable Label Data
Type

Description

VAR_OUTPUT ob_FB_Execute Bit When the bit is set, the Machine is in the “Execute” State

VAR_OUTPUT ob_FB_Stopping Bit When the bit is set, the Machine is in the “Stopping” State

VAR_OUTPUT ob_FB_Aborting Bit When the bit is set, the Machine is in the “Aborting” State

VAR_OUTPUT ob_FB_Aborted Bit When the bit is set, the Machine is in the “Aborted” State

VAR_OUTPUT ob_FB_Holding Bit When the bit is set, the Machine is in the “Holding” State

VAR_OUTPUT ob_FB_Held Bit When the bit is set, the Machine is in the “Held” State

VAR_OUTPUT ob_FB_UnHolding Bit When the bit is set, the Machine is in the “Unholding” State

VAR_OUTPUT ob_FB_Suspending Bit When the bit is set, the Machine is in the “Suspending” State

VAR_OUTPUT ob_FB_UnSuspending Bit When the bit is set, the Machine is in the “UnSuspending” State

VAR_OUTPUT ob_FB_Resetting Bit When the bit is set, the Machine is in the “Resetting” State

VAR_OUTPUT ob_FB_Completing Bit When the bit is set, the Machine is in the “Completing” State

VAR_OUTPUT ob_FB_Complete Bit When the bit is set, the Machine is in the “Complete” State

VAR_OUTPUT ob_FB_ModeChangeNotAllowed Bit

When the bit is set, the requested new mode is not valid and the
“Mode Change” command is not allowed. The machine will remain in
the current mode and current state.
This bit will remain on for 3 seconds and then reset itself.

VAR_INPUT ib_CmdReset Bit

Setting this bit, the user program indicating the “Reset” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Reset”
transition, the machine will remain in the current state and the “Reset”
command will be ignored.

VAR_INPUT ib_CmdStart Bit

Setting this bit, the user program indicating the “Start” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Start”
transition, the machine will remain in the current state and the “Start”
command will be ignored.

VAR_INPUT ib_CmdStop Bit

Setting this bit, the user program indicating the “Stop” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Stop”
transition, the machine will remain in the current state and the “Stop”
command will be ignored.

VAR_INPUT ib_CmdHold Bit

Setting this bit, the user program indicating the “Hold” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Hold”
transition, the machine will remain in the current state and the “Hold”
command will be ignored.

VAR_INPUT ib_CmdUnhold Bit

Setting this bit, the user program indicating the “UnHold” command
has been received and the machine should transition to the proper
next state. If the current machine state does not support the “UnHold”
transition, the machine will remain in the current state and the
“UnHold” command will be ignored.

VAR_INPUT ib_CmdSuspend Bit

Setting this bit, the user program indicating the “Suspend” command
has been received and the machine should transition to the proper
next state. If the current machine state does not support the
“Suspend” transition, the machine will remain in the current state and
the “Suspend” command will be ignored.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 11 Custom Solutions Center Engineering Group

Variable Type Variable Label Data
Type

Description

VAR_INPUT ib_CmdUnsuspend Bit

Setting this bit, the user program indicating the “UnSuspend”
command has been received and the machine should transition to the
proper next state. If the current machine state does not support the
“UnSuspend” transition, the machine will remain in the current state
and the “UnSuspend” command will be ignored.

VAR_INPUT ib_CmdAbort Bit

Setting this bit, the user program indicating the “Abort” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Abort”
transition, the machine will remain in the current state and the “Abort”
command will be ignored.

VAR_INPUT ib_CmdClear Bit

Setting this bit, the user program indicating the “Clear” command has
been received and the machine should transition to the proper next
state. If the current machine state does not support the “Clear”
transition, the machine will remain in the current state and the “Clear”
command will be ignored.

VAR_INPUT ib_CmdStateComplete Bit

Setting this bit, the user program indicating the “State Complete”
condition has been received and the machine should transition to the
proper next state. If the current machine state does not support the
“State Complete” transition, the machine will remain in the current
state and the “State Complete” command will be ignored.

VAR_INPUT ib_CfgRemoteCmdEnable Bit
When this bit is set, the machine is allowing state and mode transition
commands to be issued remotely in addition to the Command Bits to
the FB.

VAR_INPUT id_InpRemoteModeCmd Double
Word

This input contains the Remote Mode Command value and is the value
of the new mode the machine should transition to. If the input value
does not change, no mode change will occur and the machine will
remain in the current mode.
The valid values are 0 – 31. The FB allows up to 31 valid modes and “0”
being “NoMode”. However, the user programs should have proper
logic in place to handle all valid machine modes.

VAR_INPUT
ib_InpRemoteModeCmdChangeReq
uest Bit

When this bit is set and the machine is allowing mode transition
commands to be issued remotely, the mode change command will
then be evaluated and accepted if it is valid.

VAR_INPUT
ib_InpRemoteModeCmdChangeReq
uest

Double
Word

This input contains the Remote State Command value and is the value
of the new state the machine should transition to. If the input value
does not change, no state change will occur and the machine will
remain in the current state.
The valid State Command values are defined as follows and others are
ignored:

1: Reset
2: Start
3: Stop
4: Hold
5: UnHold
6: Suspend
7: UnSuspend
8: Abort
9: Clear

VAR_INPUT ib_InpRemoteStateCmd Bit
When this bit is set and the machine is allowing state transition
commands to be issued remotely, the state change command will then
be evaluated and accepted if it is valid.

VAR_INPUT
ibInpRemoteStateCmdChangeReque
st Bit Set this bit to allow changing states from remote command

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 12 Custom Solutions Center Engineering Group

Variable Type Variable Label Data
Type

Description

VAR_IN_OUT dw_Sts_ModeCurrent Double
Word This label contains the current PackML mode

VAR_IN_OUT dw_Sts_StateCurrent Double
Word This label contains the current state

VAR_IN_OUT dw_GOTScreen_SW Word[S
igned] This is the GOT screen selection label

VAR_IN_OUT dba_Sts_ModeBits Bit(0..3
1) This is the label that contains the current mode

VAR_IN_OUT Id_CmdMode Double
Word

The value of the new mode the machine will transition to. If the
CmdMode input value does not change, no mode change will occur
and the machine will remain in the current mode.
The valid values of CmdMode are 0 – 31. The FB allows up to 31 valid
modes and “0” being “NoMode”. However, the user programs should
have proper logic in place to handle all valid machine modes.

5 Function Block: PackML_ModeStateTimes
5.1 Description
The PackML_ModeStateTimes accumulates the timer values for all configured states and modes of a unit-machine. It
also accumulate the overall machine time since the last reset. The time unit of each timer is “second,” and each timer
will roll over at 900,000,000 seconds (i.e. 10416.67 days, or 28.5 years).

When any of the timers is rolled over, a TimeRollOverWarning bit will be set. However, the OEM programs will have to
check the timers of current mode and current state to determine which timer has overflown.

The PackML_ModeStateTimes FB utilizes a custom function block “Timer_32Bit_Sec” FB to accumulate current mode
and state time. The function of this FB is also described here.

The PackML_ModeStateTimes function block should be used right after the PackML_ModeStateManager function
block in order to accumulate the time values of the current mode and state properly.

5.2 Timer_32Bit_Sec Function Block
To use the timer, define the beginning value of the timer by inputting the value to the “Start_Timer_Value_FB.” When
the Timer_Enable_FB is set high, the timer will accumulate in seconds and the current timer value can be read from the
Current_Timer_Value_FB label. The maximum value of the timer is 900,000,000 seconds. It will overflow to zero when
it passes the maximum value.

Figure 9 Timer_32Bit_Sec Function Block

If the Timer_Enable_FB bit is off, the timer will hold the current value and shown in Current_Timer_Value_FB. The
timer will be reset to the Start_Timer_Value when it is enabled and the Timer_Reset_FB bit is high. It will continue in
the Reset State until the Timer_Reset_FB bit is off.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 13 Custom Solutions Center Engineering Group

Variable Type Variable Label Data
Type

Description

VAR_OUTPUT od_Current_Timer_Value_FB Double
Word Contains the current timer value.

VAR_INPUT id_Start_Timer_Value_FB Double
Word Contains the initial value of the timer before it starts accumulating.

VAR_INPUT ib_Timer_Enable_FB Bit Enables the timer to start accumulating.

VAR_INPUT ib_Timer_Reset_FB Bit Resets the timer value to the Start Timer Value. The reset is effective
only when the timer is enabled.

5.3 Function Block Operations
The main functions of the FB consist of (1) managing the mode timer and updating the values of current of
accumulated time of the mode, (2) managing the state timer and updating the values of current and accumulated time
of the state, and (3) managing the timer of the overall machine and updating the values of the machine timer since last
reset. The function block is shown in the figure below:

Figure 10 PackML_ModeStateTimes Function Block

5.4 Function Block Local Variables
The local variables that are used by the FB are described in this section.

Variable Type Variable Label Data
Type

Description

VAR_OUTPUT ob_TimerRollOverWarningFB Bit If any of the timers over flows, this bit will be set until the timer is
reset.

VAR_INPUT ib_CmdResetrCurrentModeTimes Bit When this bit is set, the current mode timer values will be cleared to
zero and timers of all states of the mode will also be cleared to zero.

VAR_INPUT Ib_CmdResetAllTimes Bit When this bit is set, all timer values, including the overall machine
timer (i.e. TimeSinceLastReset) will be cleared to zero.

VAR_IN_OUT dst_PackML Bit This label contains all the current and cumulative timer values for each
mode and state

5 Function Block: PackML_StateDisable_Set

5.1 Description
The PackML_StateDisable_Set FB is used to enable or disable states for each mode. Set the inputs to “FALSE” to enable
and “TRUE” to disable that state.

The following PackML states can be disabled or enabled using this FB.

- Clearing
- Starting
- Suspended
- Stopping

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 14 Custom Solutions Center Engineering Group

- Aborting
- Holding
- Suspending
- Unsuspending
- Resetting
- Completing
- Complete

The following core PackML states cannot be disabled as they are part of the “minimum” defined states and must be
present in a PackML compliant system.
- Aborted
- Stopped
- Execute
- Idle

Figure 11 PackML_StateDisable_Set Function Block

5.2 Function Block Local Variables
The local variables that are used by the FB are described in this section.

 Variable Type Variable Label Data Description

 Type

 VAR_IN/OUT dba_FB_PackMLcfgDisableStates Bit Contains the PackML disabled states configuration

 (0..31,0..17)

 VAR_INPUT ib_Clearing Bit Disable/enable the Clearing state

 VAR_INPUT ib_Starting Bit Disable/enable the Starting state

 VAR_INPUT ib_Suspending Bit Disable/enable the Suspending state

 VAR_INPUT ib_Stopping Bit Disable/enable the Stopping state

 VAR_INPUT ib_Aborting Bit Disable/enable the Aborting state

 VAR_INPUT ib_Holding Bit Disable/enable the Holding state

 VAR_INPUT ib_Held Bit Disable/enable the Held state

 VAR_INPUT ib_Unholding Bit Disable/enable the Unholding state

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 15 Custom Solutions Center Engineering Group

 VAR_INPUT ib_Suspending Bit Disable/enable the Suspending state

 VAR_INPUT ib_Unsuspending Bit Disable/enable the Unsuspending state

 VAR_INPUT ib_Resetting Bit Disable/enable the Resetting state

 VAR_INPUT ib_Completing Bit Disable/enable the Completing state

 VAR_INPUT ib_Complete Bit Disable/enable the Complete state

6 Function Block: PackML_StateTransition_Set

6.1 Description
The PackML_StateTransition_Set FB is used to enable or disable transitions between states. Set the inputs to “FALSE”
to disable and “TRUE” to enable that transition.

The following transitions between these states can be disabled or enabled using this FB.

- Stopped
- Idle
- Suspended
- Aborted
- Held
- Complete

Figure 12 PackML_StateTransition_Set Function Block

6.2 Function Block Local Variables
The local variables that are used by the FB are described in this section.

 Variable Type Variable Label Data Description

 Type

 VAR_IN/OUT dba_PackMLcfgModeTransition Bit Contains the PackML Mode transition configuration

 (0..31,0..17)

 VAR_INPUT iw_Mode Word Current mode input

 VAR_INPUT ib_Stopped Bit Disable/enable the Clearing state

 VAR_INPUT ib_Idle Bit Disable/enable the Starting state

 VAR_INPUT ib_Suspended Bit Disable/enable the Suspending state

 VAR_INPUT ib_Aborted Bit Disable/enable the Stopping state

 VAR_INPUT ib_Held Bit Disable/enable the Aborting state

 VAR_INPUT ib_Complete Bit Disable/enable the Holding state

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 16 Custom Solutions Center Engineering Group

7 Example Use of the PackML Function Blocks
The following example programs demonstrate how these function blocks can be used in an OEM program. The OEM
PackML Implementation Template project will be described in Part 6 of this Users Guide and will have more complete
program routines describing the use of PackML Core Function Blocks.

7.1 Initialization Example
The following rungs only need to be executed on the first scan of the PLC after power-up. They initialize the machine
modes and states for proper operation.

The program file can be register to run under “Initial Program” area of Program Setting in the Project Tree as shown
below:

Figure 13 –Example of Setting the Program for Initial Scan Only

1. In this example, there are five valid modes: Mode 1 – Producing, Mode 2 - Maintenance, Mode 3 – Manual, Mode
16 – User Defined 1, and Mode 17 – User Define 2. Rung 2 set up these mode names in PackML_ModeNames. If
there are additional modes for the machine, the user needs to set up additional mode names and logic to populate
the proper labels.

Figure 14 – Example of Setting PackML Modes for a Unit Machine

2. The following rung sets up all the state names in PackML_StateNames.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 17 Custom Solutions Center Engineering Group

Figure 15 - Example of Setting PackML States for a Unit Machine

3. The following rung configures the states in each mode that mode transitions are allowed.

Figure 16 - Example of Setting States that Mode Transition are Allowed

4. The Following rung configures the states that are disabled in each mode.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 18 Custom Solutions Center Engineering Group

Figure 17 - Example of Setting States that are Disabled in Each Mode

5. The following rungs initializes the machine to Mode 0 (NoMode) and State 2 (Stopped) before execution, and
updates the current mode name and state name in the proper labels.

Figure 18 - Example of Setting Initial State and Mode of the Unit Machine

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 4: PackML Core Function Blocks

Part 4 – Page 19 Custom Solutions Center Engineering Group

7.2 Example of Calling Function Blocks
1. The following rung calls the PackML_ModeStateManager function block to start the PackML operation. One should

realize that the variables connected to the inputs and outputs of the FB members of the label PackML with the
structured data type. The OEM programs should properly set up these values before the function block is called.

Figure 19 – Calling the PackML_ModeStateManager Function Block

2. The PackML_ModeStateTimes function block is then called to start accumulate timer values.

Figure 20 – Calling the PackML_ModeStateTimes Function Block

Release 3, Version 5

Engineering Group

Users Guide

OEM PackML Implementation Templates
Part 5 –Event Handling FBs

 Part 5 – i Custom Solutions Center Custom Solutions Center Engineering Group

Content

1 Introduction ... 1

2 Overview of the Event Handling Philosophy .. 1

3 Overview of the Alarm and Event Handling Function Blocks... 2

3.1 CM_Event Function Block .. 2

3.2 Event_Manager Function Block ... 2

3.3 Event_Summation Function Block ... 2

3.3.1. Event_SummationBegin Function Block .. 2

3.3.2. Event_SummationEnd Function Block ... 2

3.4 Event_Sort Function Block ... 2

4 Function Block: CM_Event ... 3

4.1 Description ... 3

4.2 Function Block Local Variables ... 3

4.3 Event Related Structured Data Type .. 4

4.3.1. SDT_Event Structured Data Type ... 4

4.3.2. SDT_EventCfg Structured Data Type .. 5

4.3.3. SDT_EventStatus .. 5

4.4 Function Block Operations ... 6

4.4.1. Examples of Alarm Data ... 7

4.4.1.1. AlarmStatus_EM00 .. 7

4.4.1.2. AlarmStatus_Event_EM00 (when Event is active) ... 7

4.4.1.3. AlarmStatus_Event_EM00 (when Event becomes inactive) .. 8

5 Function Block: Event_Manager .. 8

5.1 Description ... 8

5.2 Function Block Local Variables ... 9

5.3 Function Block Operations ... 10

5.4 Example of Using CM_Event and Event_Manager FBs .. 10

6 Function Blocks: Event_Summation, Event_SummationBegin, Event_SummationEnd .. 11

6.1 Description ... 11

6.2 Function Block Local Variables ... 11

6.2.1. Even_Summation FB Variables .. 12

6.2.2. Even_SummationBegin FB Variables ... 13

6.2.3. Even_SummationEnd FB Variables .. 13

6.3 Event Summation Related Structured Data Type ... 13

 Part 5 – ii Custom Solutions Center Custom Solutions Center Engineering Group

6.3.1. SDT_EventSummation Structured Data Type .. 13

6.4 Function Block Operations ... 14

7 Function Block: Event_Sort .. 15

7.1 Description ... 15

7.2 Function Block Local Variables ... 16

7.3 Function Block Operations ... 16

 Part 5 – iii Custom Solutions Center Custom Solutions Center Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 1 Custom Solutions Center Custom Solutions Center Engineering Group

1 Introduction
The purpose of this document is to describe the design considerations and implementation approaches of implementing
PackML Alarm and Event handling function blocks in the Mitsubishi PackML OEM Implementation Template.

Even though alarm and event handling methods are not specified in or required by the PackML standard, it is beneficial to
end users since standard alarm and event handling implementations in machine program promote consistent operations
across multiple machines in a factory.

The Mitsubishi implementation of PackML Alarm and Event Handling Function Blocks follows the philosophy and methods
shown in the OMAC Users Group PackML Implementation Guideline.

The design of these function blocks and how they can be used in a machine program implementation are described in this
document. Descriptions are included on how to expand or modify the design of these function blocks to accommodate
different fault handling philosophy of a particular user. However, the modifications that can be made are minor in nature.
Totally different fault handling philosophy will require re-write of these function blocks.

The function blocks are implemented using Mitsubishi GX Works2 Structure Text Programming language and label
programming methods.

2 Overview of the Event Handling Philosophy
The high-level overview of the implementation of Mitsubishi Alarm and Warning Event handling methods is described in
this section. The alarm and warning events are together referred to as events in this document.

• The function blocks can be used to handle alarms and warning events separately or as one type of events. If a user
determines to treat alarms and warning events separately, the same function blocks can be used to handle both
types of events. The user will have to keep track of the alarms and warnings separately. For example, one
Event_Manager FB is used to process alarm events of an equipment module and a second Event_Manager FB used
to process warning events of the same module.

• The design of the function blocks can handle events up to 10 different categories. A user can determine how many
categories are necessary for his applications.

• A user can also determine how the machine should react to any of these categories of events. The implemented
actions in the template software (as described below) can be easily modified to behave differently.

o In the Mitsubishi PackML Implementation Template package, Category 0 and Category 1 events will cause
a PackML Abort command to be issued and the PackML state machine will transition into “Aborting” state.

o In the Mitsubishi PackML Implementation Template package, Category 2, Category 3, and Category 4
events will cause a PackML Stop command to be issued and the PackML state machine will transition into
“Stopping” state.

o In the Mitsubishi PackML Implementation Template package, Category 5 through Category 9 events will
not cause any PackML command to be issued. The PackML state machine will remain at its current state.
The user is responsible to determine what action(s) the machine should take.

• When an event becomes active then inactive and active again before an “Event Reset” command is issued to the
Event_Manager, the second activation of the event is considered the same event as before and not a new event.
The Trigger bit of the event (refer to Section 4.3.1below for the Structured Data Type of an event) will reflect the
status of the event.

• The Event_Manager and Event_Summation FBs capture the first out event of an equipment module and the unit
machine respectively. These FBs also capture the first out event of each event category separately.

• When PackML State Machine is in the Resetting State or Clearing State, an Alarm Reset Command will be issued to
Even_Manager function blocks to clear all latched event flags.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 2 Custom Solutions Center Custom Solutions Center Engineering Group

3 Overview of the Alarm and Event Handling Function Blocks
3.1 CM_Event Function Block
The CM_Event FB is mainly used in Control Module routines to capture an alarm or warning event. It copies an event
configuration in the overall Equipment Module event list when the input event occurs. The event is latched on even
when the event condition becomes false. The event will stay latched until a reset command is issued to the
Event_Manager FB for the particular Equipment Module. Each event will require an instance of this FB.

3.2 Event_Manager Function Block
One and only one Event_Manager Function Block is required to manage the alarms for each Equipment Module. When
required, a second Event_Manager is used to manage warning events of the same Equipment Module.

The main function of the Event_Manager Function block is to collect all events from all Control Modules of a particular
Equipment Module and create one list of the events for this Equipment Module.

The FB summarizes the data and identifies the “First-Out” event of the Equipment Module as well as the “First Out”
events of each Event Category. The FB also unlatches Control Module events when a Reset Command is received.

3.3 Event_Summation Function Block
The Event_Summation FB is used at the Unit Machine level and it aggregates the alarms or warning events from all
Equipment Modules within the Unit Machine.

It identifies the “First Out” event for the Unit Machine and also the “First Out” event for each fault categories at the
Unit Machine Level.

The Event List of one of the Equipment Module is fed to the FB and the FB is called to produce an event list of the Unit
Machine. The Event List of the second Equipment Module is then fed to the FB and the FB is called again to aggregate
the two Equipment Module Event lists to the Unit Machine Event List. This process continues until all the event lists of
Equipment Modules of the Unit Machine are consolidated.

3.3.1. Event_SummationBegin Function Block
The Event_SummantionBegin Function Block should be called before the first Event_Summation FB is executed.
The purpose of this FB is to initialize the Event List of the Unit Machine before it is populated with the events from
all equipment modules.

3.3.2. Event_SummationEnd Function Block
The Event_SummantionEnd Function Block should be called after the last Event_Summation FB is executed. The
purpose of this FB is to clear the un-used array elements of the Unit Machine Event List.

3.4 Event_Sort Function Block
The Event_Sort Function Block performs the following functions:

• Processing the Unit Machine Event List and producing a list of all active events;

• Processing the Unit Machine Event List and producing a list of all active events of a selected category of events;

• Processing the Unit Machine Event List and producing a list of all events (both active and non-active) of a
selected event category;

• Sorting the Unit Machine Event list by event time, regardless of event category, from the earliest event to the
latest event;

• Sorting the Unit Machine Event list by event time of a selected category, from the earliest event to the latest
event;

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 3 Custom Solutions Center Custom Solutions Center Engineering Group

4 Function Block: CM_Event
4.1 Description
CM_Event FBs are used in Control Module routines to capture alarm or warning events. One instance of the CM_Event
function block is required to capture a single alarm or event. This FB is generally used in a Control Module routine to
capture events generated in that particular Control Module operation.

The structure of a CM_Event Function Block is shown in the figure below:

Figure 1 – CM_Event Function Block with Inputs and Outputs

It copies an event configuration in the overall Equipment Module event list when the input event occurs. The event is
latched on even when the event condition becomes false. The event will stay latched until a reset command is issued to
the Event_Manager FB for the particular Equipment Module. Each event will require an instance of this FB.

4.2 Function Block Local Variables
The local variables that are used by the FB are described in this section. There are four types of local variables:

• Input Variables – The values of these variables need to be properly set / defined by connecting proper logic or
variable inputs to the FB before execution.

• Output Variables – The values of these variables will be properly set or defined after the execution of the FB is
completed. If a user of the FB can chose not to use the results of the output variables.

• In_Out Variables – The variables that are set by the connecting logic, but the values are then processed by the
FB logic and the resulting values are written to the variables connected to the outputs.

• Variables – Those labels used internally in the FB that will not be exposed externally.

The following table describes the Input, Output, and In_Out variables used by the function block. The details of
Structured Data Types are defined in Section 4.3 below.

Variable Type Variable Label Data Type Description

VAR_OUTPUT ob_Sts_Active Bit This bit is on when the event is currently active.

VAR_OUTPUT ob_Sts_Latched Bit This bit is on when this event has been active at least
once since the last reset of events.

VAR_INPUT ib_CM_Event_In Bit When this bit is on, it indicates that an alarm or event
active and may need to be captured.

VAR_INPUT ist_CM_Cfg_Event SDT_EventCfg This structured variable contains the information of the
alarm or event

VAR_INPUT is_CM_Cfg_MessagePrefix String(16) This variable contains any prefix that can be appended to
the alarm message

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 4 Custom Solutions Center Custom Solutions Center Engineering Group

Variable Type Variable Label Data Type Description

VAR_IN_OUT dst_CM_Inp_EventStatus SDT_EventStatus

This structured variable contains the event status of an
equipment module where this particular event needs to
be stored and used to update the equipment module
event status

VAR_IN_OUT dsta_CM_Inp_EventStatus_Event SDT_Event(0..29)
The actual list of events of an equipment module. This
array is limited to the maximum of 30 events per
equipment module.

4.3 Event Related Structured Data Type

4.3.1. SDT_Event Structured Data Type
The SDT_Event is used to describe each alarm or warning event.

Label Data Type Description

d_ID Double Word[Signed] An unique value assigned to each event as defined by an end user

d_Value Double Word[Signed]

Value can be used to specify additional details associated with an event. For
example, an alarm ID of 1 may indicate an E-Stop PB is pressed, but the alarm
value may be used to indicate which E-Stop PB is pressed. The use of this field is
determined by users of the FB.

s_Message String(50) Text message of the event, up to the maximum of 50 characters.

wa_TimeEventArray Word[Signed](0..6)

The actual time, read from the PLC, when the event occurs. The QPLC format is as
follows:

[0]: Year (1980 to 2079)
[1]: Month (1-12)
[2]: Day (1-31)
[3]: Hour in 24 hour clock format (0 to 23)
[4]: Minutes (0-59)
[5]: Seconds (0-59)
[6]: Day of week (0-6)

wa_TimeAckArray Word[Signed](0..6)

The actual time, read from the PLC, when the event condition clears.

[0]: Year (1980 to 2079)
[1]: Month (1-12)
[2]: Day (1-31)
[3]: Hour in 24 hour clock format (0 to 23)
[4]: Minutes (0-59)
[5]: Seconds (0-59)
[6]: Day of week (0-6)

d_Category Double Word[Signed] The category of the event. The current design allows Categories 0 through 9.

b_Trigger Bit 1: the event is active
0: the event is not active

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 5 Custom Solutions Center Custom Solutions Center Engineering Group

4.3.2. SDT_EventCfg Structured Data Type
This SDT is mainly used to define a particular alarm or warning event.

Label Data Type Description

d_ID Double Word[Signed] An unique value assigned to each event as defined by an end user

d_Value Double Word[Signed]
Value can be used to specify additional details associated with an event. For example, an
alarm ID of 1 may indicate an E-Stop PB is pressed, but the alarm value may be used to
indicate which E-Stop PB is pressed. The use of this field is determined by users of the FB.

s_Message String(34) Text message of the event, up to the maximum of 34 characters.

d_Category Double Word[Signed] The category of the event. The current design allows Categories 0 through 9.

4.3.3. SDT_EventStatus
Label Data Type Description

d_Sts_NumEvents Double
Word[Signed] The number of events in the Event List

d_Sts_NumAllEvents Double
Word[Signed] The total number of events that are active

b_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched until event is reset

b_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched until event is reset

b_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched until event is reset

b_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched until event is reset

b_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched until event is reset

b_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched until event is reset

b_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched until event is reset

b_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched until event is reset

b_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched until event is reset

b_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched until event is reset

b_Sts_Category_0_NotLatched Bit A Category 0 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_1_NotLatched Bit A Category 1 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_2_NotLatched Bit A Category 2 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_3_NotLatched Bit A Category 3 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_4_NotLatched Bit A Category 4 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_5_NotLatched Bit A Category 5 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 6 Custom Solutions Center Custom Solutions Center Engineering Group

Label Data Type Description

b_Sts_Category_6_NotLatched Bit A Category 6 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_7_NotLatched Bit A Category 7 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_8_NotLatched Bit A Category 8 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_9_NotLatched Bit A Category 9 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_EventActive Bit This flag is set when there is an active event

d_Wrk_ResetID Double
Word[Signed] This is an internal variable for FBs use. Do not modify the values.

d_Wrk_EventArraySize Double
Word[Signed] This is an internal variable for FBs use. Do not modify the values.

d_Wrk_StringEventSize Double
Word[Signed] This is an internal variable for FBs use. Do not modify the values.

d_Wrk_UpdateEventListID Double
Word[Signed] This is an internal variable for FBs use. Do not modify the values.

4.4 Function Block Operations
The following example is used to describe how to use the CM_Event function block:

Figure 2 – Example of CM_Event Function Block

• By connecting “EN” to the power rail, this instance of the function block is always enabled.

• When a “STOP” key for “Equipment Module 00” on an operator interface is pressed, the status of
AlarmStatus_EM00 is updated with the information of the alarm that is configured in AlarmCfg[2] and
Message_Prefix_CM02. This alarm configuration needs to be initialized by the end user before calling the FB
and the happening of the actual event.

o AlarmCfg[2].id:=65;

o AlarmCfg[2].Value:=0;

o AlarmCfg[2].Message:="Stop PB Pressed";

o AlarmCfg[2].Category:=2;

o Message_Prefix_CM02:= “HMI “

• The actual alarm information (e.g. ID, Message, Time of Active) is recorded in the AlarmStatus_Event_EM00
array. The Sts_Active and Sts_Latched bits are set high.

• When the “STOP” key of “Equipment Module 00” becomes inactive, the Acknowledge Time is recorded and
the Sts_Active bit is reset. However, the Sts_Latched bit is still high until a reset command is issued to the
Event_Manager FB (Refer to Section 5 of this document).

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 7 Custom Solutions Center Custom Solutions Center Engineering Group

4.4.1. Examples of Alarm Data

4.4.1.1. AlarmStatus_EM00
The before values are the values of AlarmStatus_EM00 before any event occurs. After the GOT_StopKey is
pressed, the values of AlarmStatus_EM00 were updated by the CM_Event FB and are shown as below:

Label Value (before) Value (After)
d_Sts_NumEvents 0 1
d_Sts_NumAllEvents 0 1
b_Sts_Category_0_Latched 0 0
b_Sts_Category_1_Latched 0 0
b_Sts_Category_2_Latched 0 1
b_Sts_Category_3_Latched 0 0
b_Sts_Category_4_Latched 0 0
b_Sts_Category_5_Latched 0 0
b_Sts_Category_6_Latched 0 0
b_Sts_Category_7_Latched 0 0
b_Sts_Category_8_Latched 0 0
b_Sts_Category_9_Latched 0 0
b_Sts_Category_0_NotLatched 0 0
b_Sts_Category_1_NotLatched 0 0
b_Sts_Category_2_NotLatched 0 1
b_Sts_Category_3_NotLatched 0 0
b_Sts_Category_4_NotLatched 0 0
b_Sts_Category_5_NotLatched 0 0
b_Sts_Category_6_NotLatched 0 0
b_Sts_Category_7_NotLatched 0 0
b_Sts_Category_8_NotLatched 0 0
b_Sts_Category_9_NotLatched 0 0
b_Sts_EventActive 0 1

4.4.1.2. AlarmStatus_Event_EM00 (when Event is active)
The actual event list of Equipment Module 00 is an array of 30 elements. Before any event, the array contains
elements with zero values after initialization.

After the GOT_StopKey is set high, the alarm is recorded in the event list, and the configuration AlarmCfg[2]
was copied into the first array location together with the time value when the event occurs.

Label Value (before) Value (After)
[0]

d_ID 0 65
d_Value 0 0
s_Message HMI STOP PB Pressed
wa_TimeEventArray

[0] 0 2010
[1] 0 6
[2] 0 28
[3] 0 9
[4] 0 15
[5] 0 7
[6] 0 1

wa_TimeAckArray
[0] 0 0
[1] 0 0
[2] 0 0
[3] 0 0
[4] 0 0
[5] 0 0
[6] 0 0

d_Category 0 2
b_Trigger 0 1

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 8 Custom Solutions Center Custom Solutions Center Engineering Group

Label Value (before) Value (After)
[1]
[2]
…….
[29]

4.4.1.3. AlarmStatus_Event_EM00 (when Event becomes inactive)
After the GOT_StopKey becomes low, the alarm is acknowledged and the time value when the event is
acknowledged is recorded. The Trigger bit is reset to indicate that the event is no longer active.

Label Value (Before) Value (After)
[0]

ID 65 65
d_ID 0 0
d_Value EM00 HMI STOP PB Pressed HMI STOP PB Pressed
s_Message
wa_TimeEventArray 2010 2010

[0] 6 6
[1] 28 28
[2] 9 9
[3] 15 15
[4] 7 7
[5] 1 1
[6]

wa_TimeAckArray 0 2010
[0] 0 6
[1] 0 28
[2] 0 9
[3] 0 26
[4] 0 6
[5] 0 1
[6] 2 2

d_Category 1 0
b_Trigger

[2]
…….
[29]

5 Function Block: Event_Manager
5.1 Description
The main purpose of the Event_Manager Function Block is to consolidate all events created by all Control Modules of a
particular Equipment Module and create one list of the events for this Equipment Module.

One and only one Event_Manager Function Block is required to manage the alarms for each Equipment Module. When
required, a second Event_Manager instance is used to manage warning events of the same Equipment Module if a user
chooses to handle alarms and warning events separately.

The FB summarizes the events and identifies the “First-Out” event of the Equipment Module as well as the “First Out”
events of each Event Category. The FB also unlatches Control Module events of this Equipment Module when a Reset
Command is received.

The structure of the function block is shown in Figure 3 below.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 9 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 3 – Event_Manager Function Block

5.2 Function Block Local Variables
The Input, Output, and In_Out variables that are used by the FB are described in this section. The details of Structured
Data Types are defined in Section 4.3 .

Variable Type Variable Label Data Type Description

VAR_INPUT is_Cfg_MessagePrefix String(16) This variable contains any prefix that can be appended to
the alarm messages of this equipment module alarm list.

VAR_INPUT ib_Cmd_ClearFirstOutEvent Bit When this bit is set, all First-Out events of this equipment
module will be cleared.

VAR_INPUT ib_Cmd_Reset Bit When this bit is set, all latched events that are not
currently active will be cleared.

VAR_OUTPUT ob_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched until
event is reset

VAR_OUTPUT ob_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched until
event is reset

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 10 Custom Solutions Center Custom Solutions Center Engineering Group

Variable Type Variable Label Data Type Description

VAR_OUTPUT ob_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched until
event is reset

VAR_IN_OUT dst_Inp_EventStatus SDT_EventStatus This structured variable contains the event status of an
equipment module

VAR_IN_OUT dst_Inp_EventStatus_FirstOutEvent SDT_Event This structured variable contains the information of the
first out event of the equipment module

VAR_IN_OUT dsta_Inp_EventStatus_FirstOutEventCat SDT_Event(0..9) This array of structured variables contains the information
of first out events of all event categories

VAR_IN_OUT dsta_Inp_EventStatus_Event SDT_Event(0..29) The actual list of events of an equipment module. This
array is limited to the maximum of 30 events per
equipment module.

5.3 Function Block Operations
The Event_Manager FB should be called in a program scan after all control modules have been executed, and the
events associated with all control modules have been recorded using CM_Event FBs. In the example below,
AlarmStatus_EM00 and AlarmStatus_Event_EM00 arrays of SDTs have been updated by all CM_Event FBs before the
Event_Manager FB is called.

Figure 4 – Example of Event_Manager Function Block

The Event_Manager function block then appends the EventManager_MessagePrefix to each event message, sorts out
the list of events in AlarmStatus_Event_EM00 and identifies the First Out event for the Equipment module as well as
the First Out events for each event category. The results are updated in AlarmStatus_EM00,
AlarmStatus_FirstPut_EM00, AlarmStatus_FirstOutCat_EM00, and AlarmStatus_Event_EM00.

5.4 Example of Using CM_Event and Event_Manager FBs
The following logic will capture the events of “Abort”, “GuardDoorOpen”, and “LowMaterial” keys are pressed on a
GOT by the instances of the CM_Event function block. The AlarmStatus_EM00 and AlarmStatus_Event_EM00 will be
updated with these events.

The Event_Manager will then consolidate the events and record the overall first out event of EM00 and first out events
for each category. The results will then be used by Event_Summation FB to produce an event list for the overall unit
machine.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 11 Custom Solutions Center Custom Solutions Center Engineering Group

6 Function Blocks: Event_Summation, Event_SummationBegin,
Event_SummationEnd
6.1 Description
The Event_Summation Function Block summarizes the event data from equipment modules (created by using
Event_Manager FBs) and creates a summarized list of events for the unit machine. It summarizes the events by
locating the unit machine first out event and unit machine first out events for all categories that are active.

Additionally, associated function blocks Event_SummationBegin and Event_SummationEnd initializes and cleans-up
the list of events after the summation of events from all equipment modules.

The structure of the Event_Summation function block, Event_SummationBegin, and Event_SummationEnd are shown
in Figure 5, Figure 6, and Figure 7 respectively.

Figure 5 – Event_Summation Function Block

Figure 6 – Event_SummationBegin Function Block

Figure 7 – Event_SummationEnd Function Block

6.2 Function Block Local Variables
The Input, Output, and In_Out variables that are used by the FBs are described in this section. The details of Structured
Data Types are defined in Section 4.3 and Section 6.3 of this document.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 12 Custom Solutions Center Custom Solutions Center Engineering Group

6.2.1. Even_Summation FB Variables
Variable Type Variable Label Data Type Description

VAR_OUTPUT ob_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched
until event is reset

VAR_OUTPUT ob_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched
until event is reset

VAR_IN_OUT dst_Inp_EventStatus SDT_EventStatus This structured variable contains the event status of
an equipment module that will be summarized

VAR_IN_OUT dst_Inp_EventStatus_FirstOutEvent SDT_Event
This structured variable contains the information of
the first out event of the equipment module that will
be summarized

VAR_IN_OUT dsta_Sts_EventSum_FirstOutCat SDT_Event(0..9)
This array of structured variables contains the
information of first out events of all event categories
that will be summarized

VAR_IN_OUT dsta_Inp_EventStatus_Event SDT_Event(0..29)
The actual list of events of an equipment module
that will be summarized. This array is limited to the
maximum of 30 events per equipment module.

VAR_IN_OUT dst_Sts_EventSummation SDT_EventSummation This structured variable contains the event status of
the overall unit machine

VAR_IN_OUT dst_Sts_EventSummation_FirstOut SDT_Event This structured variable contains the information of
the first out event of the unit machine

VAR_IN_OUT dsta_Sts_EventSummation_FirstOu
tCat SDT_Event(0..9)

This array of structured variables contains the
information of first out events of all event categories
of the unit machine

VAR_IN_OUT dsta_Sts_EventSummation_Events SDT_Event(0..99)
The actual list of events of the unit machine. This
array is limited to the maximum of 100 events per
unit machine.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 13 Custom Solutions Center Custom Solutions Center Engineering Group

6.2.2. Even_SummationBegin FB Variables
Variable Type Variable Label Data Type Description

VAR_IN_OUT dst_Sts_EventSummation SDT_EventSummation This structured variable contains the event status of
the overall unit machine

VAR_IN_OUT dst_Sts_EventSummation_FirstOut SDT_Event This structured variable contains the information of
the first out event of the unit machine

VAR_IN_OUT dsta_Sts_EventSummation_FirstOu
tCat SDT_Event(0..9)

This array of structured variables contains the
information of first out events of all event categories
of the unit machine

VAR_IN_OUT dsta_Sts_EventSummation_Events SDT_Event(0..99)
The actual list of events of the unit machine. This
array is limited to the maximum of 100 events per
unit machine.

6.2.3. Even_SummationEnd FB Variables
Variable Type Variable Label Data Type Description

VAR_IN_OUT dst_Sts_EventSummation SDT_EventSummation This structured variable contains the event status of
the overall unit machine

VAR_IN_OUT dst_Sts_EventSummation_FirstOut SDT_Event This structured variable contains the information of
the first out event of the unit machine

VAR_IN_OUT dsta_Sts_EventSummation_FirstOu
tCat SDT_Event(0..9)

This array of structured variables contains the
information of first out events of all event categories
of the unit machine

VAR_IN_OUT dsta_Sts_EventSummation_Events SDT_Event(0..99)
The actual list of events of the unit machine. This
array is limited to the maximum of 100 events per
unit machine.

6.3 Event Summation Related Structured Data Type

6.3.1. SDT_EventSummation Structured Data Type
Label Data Type Description

d_Sts_NumEvents Double
Word[Signed] Total number of events

b_Sts_Category_0_Latched Bit A Category 0 event has occurred and flag is latched until event is reset

b_Sts_Category_1_Latched Bit A Category 1 event has occurred and flag is latched until event is reset

b_Sts_Category_2_Latched Bit A Category 2 event has occurred and flag is latched until event is reset

b_Sts_Category_3_Latched Bit A Category 3 event has occurred and flag is latched until event is reset

b_Sts_Category_4_Latched Bit A Category 4 event has occurred and flag is latched until event is reset

b_Sts_Category_5_Latched Bit A Category 5 event has occurred and flag is latched until event is reset

b_Sts_Category_6_Latched Bit A Category 6 event has occurred and flag is latched until event is reset

b_Sts_Category_7_Latched Bit A Category 7 event has occurred and flag is latched until event is reset

b_Sts_Category_8_Latched Bit A Category 8 event has occurred and flag is latched until event is reset

b_Sts_Category_9_Latched Bit A Category 9 event has occurred and flag is latched until event is reset

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 14 Custom Solutions Center Custom Solutions Center Engineering Group

Label Data Type Description

b_Sts_Category_0_NotLatched Bit A Category 0 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_1_NotLatched Bit A Category 1 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_2_NotLatched Bit A Category 2 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_3_NotLatched Bit A Category 3 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_4_NotLatched Bit A Category 4 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_5_NotLatched Bit A Category 5 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_6_NotLatched Bit A Category 6 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_7_NotLatched Bit A Category 7 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_8_NotLatched Bit A Category 8 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_Category_9_NotLatched Bit A Category 9 event has occurred and flag is NOT latched. The flag is reset when
the event becomes inactive.

b_Sts_CurrentActiveEvent Bit This flag is set when there is an active event

d_Wrk_EventArraySize Double
Word[Signed] This is an internal variable for FBs use. Do not modify the values.

6.4 Function Block Operations
This example in Figure 9 below illustrates how the event list of a unit machine is created using the Event_Summation
FBs and Event_SummationBegin and Event_SummationEnd FBs.

• The Event_SummationBegin FB is called first to initialize all structured labels and arrays of structured labels. After
the execution of this FB, all the labels are initialized to zero (values) or blank (strings).

• The Event_Summation FB is called next in Rung 2 to process the alarm information for Equipment Module 00. The
event lists of Equipment 00 are processed and documented in the unit machine event lists AlarmSummation,
AlarmSummation_FirstOut, Alarm_Summation_FirstOutCat, and AlarmSummation_Events.

• The Event_SummationFB is called again in Rung 3 to process the alarm information for Equipment Module 01. The
event lists of Equipment 01 are processed and compared to the information from EM00 that has already been
recorded in the Unit Machine lists. The overall First Out event will be determined and updated when necessary,
and so are the first out events for all categories. The combined information is then recorded in the unit machine
event lists AlarmSummation, AlarmSummation_FirstOut, Alarm_Summation_FirstOutCat, and
AlarmSummation_Events.

• The step is repeated for all other equipment modules when necessary. In this example, there are only two
equipment modules so that the Event_SummationEnd FB is called to clear out the arrays that are not used if the
total number of events is less than the maximum event size of 100.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 15 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 8 – Example – Event Summation of a Unit Machine

7 Function Block: Event_Sort
7.1 Description
The Event_Sort function block is used to filter and sort the event list of a unit machine for reporting or display purposes.
It is capable of:

• Processing the Unit Machine Event List and producing a list of all active events;

• Processing the Unit Machine Event List and producing a list of all active events of a selected category of events;

• Processing the Unit Machine Event List and producing a list of all events (both active and non-active) of a
selected event category;

• Sorting the Unit Machine Event list by event time, regardless of event category, from the earliest event to the
latest event;

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 16 Custom Solutions Center Custom Solutions Center Engineering Group

• Sorting the Unit Machine Event list by event time of a selected category, from the earliest event to the latest
event.

The structure of the Event_Sort function block is shown in Figure 10 below:

Figure 9 – Event_Sort Function Block

7.2 Function Block Local Variables
The Input, Output, and In_Out variables that are used by the FBs are described in this section. The details of Structured
Data Types are defined in Section 4.3 and Section 6.3 of this document.

Variable Type Variable Label Data Type Description
VAR_INPUT ib_Cmd_FilterActiveEvents Bit Setting this bit will filter events that are currently active

and document them in the Sorted List of the Unit Machine
VAR_INPUT ib_Cmd_FilterCategory Bit Setting this bit will filter events in the Category as

specified by Cfg_FilterCategory and document them in the
Sorted List of the Unit Machine

VAR_INPUT ib_Cmd_Sort Bit Setting this bit will sort the events in the Sorted List in
chronological order, from the earliest event to the last
event.

VAR_INPUT id_Cfg_FilterCategory Double Word[Signed] This parameter specifies the Category of events that are
filtered and displayed.

VAR_INPUT ib_Cfg_SortCategory Bit Setting this bit together with the Cmd_Sort will not only
sort the events in chronological order but also group them
by category.

VAR_INPUT ist_Inp_EventSummation SDT_EventSummation The structured variable contains the information of the
summarized list of events

VAR_INPUT ist_Inp_EventSummation_FirstOut SDT_Event The structured variable contains the first out event
information of the summarized list of the Unit Machine

VAR_INPUT ista_Inp_EventSummation_FirstOutC
at

SDT_Event(0..9) The array of structured variables contains the information
of first out event per category of the summarized list of
the Unit Machine.

VAR_INPUT ista_Inp_EventSummation_Events SDT_Event(0..99) The array of events in the summarized list

VAR_IN_OUT dsta_Sts_SortFilterEventList SDT_Event(0..399) The list of events after sorting

VAR_OUTPUT od_Sts_SortFilterNumEvents Double Word[Signed] The number of events in the sorted list

7.3 Function Block Operations
An example of using the Event_Sort function block is shown in Figure 11 below.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 5: Event Handling FBs

Part 5 – Page 17 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 10 – Example of Event_Sort FB Operations

It is important to know the sequence of the command flags will have effects on how the filtering and sorting work. The
table below summarizes the functions that are executed by setting various flags.

The operations of the commands are summarized in the following table:

St
ar

tF
ilt

er
Ac

tiv
eE

ve
nt

St
ar

tF
ilt

er
By

Ca
te

go
ry

St
ar

tS
or

t

So
rt

An
dG

ro
up

By
Ca

te
go

ry

Fi
lte

rA
la

rm
Ca

te
go

ry

Operations

0 0 0 X X The Sort List will be updated with the AlarmSummation_Events List

1 0 0 X X The events in the AlarmSummation_Events will be filtered and only active events will be recorded in the
AlarmSortedList

0 1 0 X n The events in the AlarmSummation_Events will be filtered and events in Category n will be recorded in the
AlarmSortedList, regardless whether the events are currently active or not.

1 1 0 X n The events in the AlarmSummation_Events will be filtered and only ACTIVE events in Category n will be recorded in
the AlarmSortedList.

0 X 1 0 X The events in the AlarmSummation_Events will be sorted in chronological order and recorded in the AlarmSortedList
with the earliest event first.

0 X 1 1 X
The events in the AlarmSummation_Events will be sorted in chronological order grouped by category. The events will
be recorded in the AlarmSortedList with the lowest category and earliest event first. StartFilterByCategory flag needs
to be set before the StartSort command.

1 X 1 X X

When StartFilterActiveEvent flag is on then the StartSortFlag is on, the events in the AlarmSortedList will be sorted in
chronological order and recorded in the AlarmSortedList with the earliest event first.

If the StartSortFlag is on first then StartFilterActiveEvent is on, the StartFilterActiveEvent flag will have no effect and
the sorting will be done on the AlarmSummation_Events array instead of AlarmSortedList.

1 X 0 1 X

The events in the AlarmSortedList will be sorted in chronological order grouped by category. The events will be
recorded in the AlarmSortedList with the lowest category and earliest event first.

If the StartSort Flag is on first then StartFilterActiveEvent is on, the StartFilterActiveEvent flag will have no effect and
the sorting will be done on the AlarmSummation_Events array instead of AlarmSortedList.

Release 3, Version 5

OEM PackML Implementation Templates
Part 6 – OEM PackML Template Project and

Implementation

Engineering Group

Users Guide

Part 6 – i Custom Solutions Center Custom Solutions Center Engineering Group

Content

1 Introduction ... 1

2 PackML Template System Hardware Architecture .. 1

3 Mitsubishi PackML Template Project Structure Overview .. 1

4 Mitsubishi PackML Template Project .. 2

4.1 Initial Program Type ... 3

4.2 Scan Program Type ... 3

4.3 Other Program Types ... 4

5 PackML Global Labels .. 4

5.1 PackML_FB Group .. 4

5.1.1. PackMLFB Structured Data Type .. 4

5.2 OEM_Template_PackML_Labels .. 6

5.2.1. PackML_Module_Cmd Structured Data Type .. 7

5.3 OEM_Template_PackML_GOT_Keys.. 8

5.4 OEM_Template_Event_Labels ... 9

5.5 OEM_Template_Event_GOT_Keys ... 9

6 PackML Template Project Program Organization Units... 10

6.1 Initialization POU .. 10

6.1.1. Equipment Module PackML Initialization POUs .. 10

6.1.2. Unit Machine PackML Initialization POUs .. 11

6.2 Unit Machine Level POUs ... 12

6.2.1. UM_Main ... 12

6.2.2. PackML_Main... 12

6.2.3. UM_LineComm .. 12

6.2.4. UM_EventControl .. 12

6.3 Equipment Module Level POUs .. 12

6.3.1. EMxx_Main .. 13

6.3.2. EMxx_CMnn_Routine .. 13

6.3.3. EMxx_EventControl ... 13

6.3.4. EMxx_PackML_Cmd_Sum .. 13

6.4 POU Scan Order .. 13

7 PLC CPU Parameters and Settings ... 14

7.1 PLC System Parameters .. 14

7.2 PLC File Parameters .. 15

Part 6 – ii Custom Solutions Center Custom Solutions Center Engineering Group

7.3 Device Settings ... 15

7.4 I/O Assignments ... 16

7.5 Multiple CPU Setting .. 17

7.6 Built In Ethernet Port Setting ... 17

7.7 Device Label Automatic Assignments .. 18

8 Program Memory Space .. 20

8.1 Downloading Symbolic Information File to the PLC Standard ROM location to save program memory space 20

9 This section documents the steps that an OEM will take to add the POU’s Example of Adding an Equipment Module to
the Template System ... 22

9.1 Adding EM02_Init POU ... 22

9.2 Adding EM02 Program File ... 27

9.3 Modifying PackML_Main Routine .. 34

10 Example of Adding a Control Module to the Template System ... 35

11 Issuing PackML Commands in a Machine Program .. 38

11.1 Example 1: Transition from Producing Mode Starting State to Execute State ... 38

11.2 Example 2: Transition from Manual Mode Execute State to Stopping State ... 39

Part 6 – iii Custom Solutions Center Custom Solutions Center Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 1 Custom Solutions Center Custom Solutions Center Engineering Group

1 Introduction
This document describes the program structure of the PackML Implementation Template project, the functions and
implementation details of each program, and how an OEM can tailor the template routines that are included in the
template project to conform to the actual mechanical systems.

Release 2 of the Mitsubishi PackML OEM Implementation Templates also includes the function blocks that handle events of
a unit machine.

This project structure is based on PackML Implementation Guidelines released by the OMAC Users Group and follows the
ISA-88 Make2Pack modularization concept.

2 PackML Template System Hardware Architecture
The Mitsubishi PackML templates are designed to run on a system with the minimum of a QnUDEH PLC and a GOT-16 HMI.
Optionally the system can contain a Q172D Motion Controller for motion applications that are required for a particular
machine. However, no motion programs are included in the PackML templates. Only examples on how to configure Multi-
CPU parameters are included in this template release.

The system architecture used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a
Q06UDEHCPU, the motion controller is Q172D, and the GOT is a GT-16s with the resolution of 800 x 600. Because of the
large number of tags required to support the PackTags specification, an extended memory card may be required to be
installed in the Q06UDEHCPU.

Ethernet Network Switch

Programming Laptop
192.168.1.5

GOT-16 (800x600)
192.168.1.90

iQ System

USB

Q06UDEH CPU
192.168.1.40

Channel 1

Q172D CPU

Figure 1 – Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and to the Q06UDEHCPU through the GOT Ethernet Transparent Mode. The Transparent
Mode is set up to go through the Ethernet port on the Q06UDEH CPU (with IP Address 192.168.1.40). During the system
operation, GOT is configured to work with the iQ PLC through the same Q06UDEH CPU Built-in Ethernet port. The
configuration of the motion controller is also through the GOT Ethernet Transparent Mode and targeted to CPU #2 in the
system.

3 Mitsubishi PackML Template Project Structure Overview
The Mitsubishi PackML Template Project provides a pre-defined project structure that can be used by an OEM to
implement the control programs for a machine. The project is structured with the hierarchy of Project -> Program Files ->
Tasks - > Program Block or Program Organization Unit (POU).

Figure 2 below shows the overall organization of the PackML Template Project:

• The Project “PackML and Event Implementation” contains many Program Files.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 2 Custom Solutions Center Custom Solutions Center Engineering Group

o Program File “MainInit” contains the tasks necessary to initialize the unit machine and all the equipment
modules (designated as EM00 to Emxx) of the unit machine. The number of Equipment Module required
for the Unit Machine depends on the actual mechanical design of the machine and the logical division of
the machine.

• The Mitsubishi PackML Template project is designed to have one Task per Program File other than the main
initialization functions.

• The Program File UnitMach contains the Task “Unit_Machine” which contains all the necessary Program Blocks at
the Unit Machine level. The PackML state and mode transitions occur at the Unit Machine level so that the PackML
core function blocks are used only in the Unit_Machine level.

• Each Equipment Module of the Unit Machine has its own Program File and associated task and program blocks.
The number of Program Files required depends on the number of the Equipment Module. Each Equipment Module
can have as many Control Modules as necessary to perform the control functions of the Equipment Module.

o The Mitsubishi PackML Template Project assigns each Equipment Module a main program block, an
Event_Control program block, and an Equipment Module PackML Command and Status Summation
Program block together with as many control modules as necessary to control the actual equipment.

 Project: PackML and Event Implementation

Program File: MainInit

Task: PLC_Init

Program Block (POU)
PackML_UnitMachine_Setup

Program File: UnitMach

Task: Unit_Machine

Program Block (POU)
 UM_EventControl

Program Block (POU)
 UM_LineComm

Program Block (POU)
 PackML_Main

Program Block (POU)
 UM_Main

Task: EM00

Program Block (POU)
 EM00_CMnn_Routine

Program Block (POU)
 EM00_CM01_Routine

Program Block (POU)
 EM00_CM00_EventControl

Program Block (POU)
 EM00_Main

Program Block (POU)
 EM00_CM02_Routine

Program Block (POU)
 EM00_PackML_Cmd_Sum

Program File: EM00

Task: EM01

Program Block (POU)
 EM01_CMnn_Routine

Program Block (POU)
 EM01_CM01_Routine

Program Block (POU)
 EM01_CM00_EventControl

Program Block (POU)
 EM01_Main

Program Block (POU)
 EM01_CM02_Routine

Program Block (POU)
 EM01_PackML_Cmd_Sum

Program File: EM01

Task: EMxx

Program Block (POU)
 EMxx_CMnn_Routine

Program Block (POU)
 EMxx_CM01_Routine

Program Block (POU)
 EMxx_CM00_EventControl

Program Block (POU)
 EMxx_Main

Program Block (POU)
 EMxx_CM02_Routine

Program Block (POU)
 EMxx_PackML_Cmd_Sum

Program File: EMxx

Task: EM00_Init

Program Block (POU)
EM00_Init

Task: EM01_Init

Program Block (POU)
EM01_Init

Task: EMxx_Init

Program Block (POU)
EMxx_Init

Figure 2 – The Overall Structure of the PackML Template Project

4 Mitsubishi PackML Template Project
The actual Mitsubishi PackML Template Project contains the structure to support a Unit Machine with two Equipment
Modules and five Control Modules (including one module for event control and one for PackML command and status
summation) within each Equipment Module.

The structure can be easily expanded to match the actual Unit Machine structure. For example, if the actual machine has
three Equipment Modules instead of two, the OEM can duplicate the complete Program File EM00 and modify the all
names (such as Program File Name, Task Name, Control Module Names, etc.) and labels referenced in the new equipment
module from EM00 to EM02. An example is given in Section 8 of this document.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 3 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 3 shows the actual project structure in GX Works 2. After all Program Organization Units (POU) are created, they are
registered in the proper program setting areas.

Figure 3 – Project Structure of PackML Implementation Template

4.1 Initial Program Type
Programs registered as Initial Program Type will only be executed during the first scan of the PLC after it is first
powered up or reset.

• The Initial Program type contains the Program File MainInit with three tasks EM00_Init, EM01_Init, PLC_Init.

• EM00_Init task contains the POU EM00_Init which has the actual program routine initializing the Equipment
Module EM00 and local variables associated with the routine.

• EM01_Init task contains the POU EM01_Init which has the actual program routine initializing the Equipment
Module EM00 and local variables associated with the routine.

• PLC_Init task contains the POU PackML_UnitMachine_Setup which has the actual program routine initializing
the Unit Machine with proper PackML modes and states and the local variables associated with the routines.

4.2 Scan Program Type
Most the program files are registered as Scan Program type that will be executed on every scan of the PLC. The PackML
template contains Program files for a machine with two Equipment Modules.

• The UniMach Program File contains the Unit_Machine Task and there are four POUs: UM_Main, PackML_Main,
UM_LineComm, and UM_EventControl within the Task.

• The EM00 Program File contains the EM00 Task and there are five POUs: EM00_Main,
EM00_CM00_EventControl, EM00_CM01_Routine, EM00_CM02_Routine, EM00_CM03_Routine, and
EM00_PackML_Cmd_Sum.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 4 Custom Solutions Center Custom Solutions Center Engineering Group

• The EM01 Program File contains the EM01 Task and there are five POUs: EM01_Main,
EM01_CM00_EventControl, EM01_CM01_Routine, EM01_CM02_Routine, EM01_CM03_Routine, and
EM01_PackML_Cmd_Sum.

4.3 Other Program Types
The PackML Template project does not use the Standby, Fixed Scan, and No Execution Program Types.

5 PackML Global Labels
This section contains the detailed descriptions of the global labels used in the PackML Implementation Template project.
There are five groups of Global Labels used in the PackML Template Project. The groups PackTags_Adm,
PackTags_Command, and PackTags_Status are labels related to PackTags that are described in Part 3 of the Users Guide
and will not be described in this document.

5.1 PackML_FB Group
This group contains global labels that are critical to the operation of PackML Core function blocks. The Structured Data
Types PackMLFB is defined to support the core PackML FB operations.

Variable Label Data Type Description

gvba_PackML_cfgModeTransitions Bit(0..31,0..17)

These are the configuration variables that OEM programs need to define at
which states where mode transitions are allowed for each mode. For
example, gvba_PackML_cfgModeTransitions[1, 2] = 1 means at Mode 1
(“Producing” mode) State 2 (“Stopped”) state, the machine is allow to
switch mode. However, gvba_PackML_cfgModeTransitions[2, 2] should
also be set to 1 to allow the mode change from Mode 1 to Mode 2.
Otherwise, the mode change from 1 to 2 is not allowed.

gvba_PackML_cfgDisableStates Bit(0..31,0..17)

These are the configuration variables that OEM programs need to define at
which states are not enabled for each mode. For example,
gvba_PackML_cfgModeTransitions[2, 5] = 1 means at Mode 2
(“Maintenance” mode) State 5 (“Suspended”) state is not configured as a
part of the state model for Mode 2.

gvsa_ PackML_ModeNames String(32)(0..31) These are the configuration variables that OEM programs need to
configure all the names of the modes in the machine.

gvsa_ PackML_StateNames String(32)(0..17) These are the configuration variables that OEM programs need to
configure for all the names of the states in the machine.

gvb_ TimeRollOverWarning Bit This bit is on when any of the Mode or State timers roll over its limit.

gvs_ Sta_StateCurrentName String(32) This is a status variable where the name of the current state is stored.

gvs_ Sta_UnitModeCurrentName String(32) This is a status variable where the name of the current mode is stored.

gvb_ PackML_ResetAllTimes Bit This bit is used to reset all mode and state timers of the unit machine

gvb_ PackML_ResetCurrentModeTimes Bit This bit is used to reset all mode timers of the unit machine

svst_ PackML PackMLFB
These are the labels of PackML commands and status used to interact with
the ModeStateManager function block. The PackMLFB Structured Data
Type is detailed below.

5.1.1. PackMLFB Structured Data Type
This structured data type contains key elements to support the operation of the PackML_ModeStateManager
Function Block.

Variable Label Data Type Description

svst_ PackML PackMLFB The overall PackML label that contains various values and parameters for
the machine states and modes

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 5 Custom Solutions Center Custom Solutions Center Engineering Group

Variable Label Data Type Description

 d_CmdMode Double
Word

When OEM machine programs require the machine to be in a certain
mode, this label should be set to the desired value of the mode. For
example, when PackML.CmdMode is set to “1” the machine is intended to
be in the “Producing” mode.
Per PackML specification, the Mode Numbers 1, 2 and 3 are defined as
“Producing”, “Maintenance” and “Manual” respectively. User Define
Modes can be from Model 16 and above. Mode Numbers 4 through 15 are
reserved for future use.

 b_CmdReset Bit
When OEM machine programs receive a “Reset” command, this bit should
be set by the programs. It should be cleared by the OEM machine
programs when the “Reset” command is no longer valid.

 b_CmdStart Bit
When OEM machine programs receive a “Start” command, this bit should
be set by the programs. It should be cleared by the OEM machine
programs when the “Start” command is no longer valid.

 b_CmdStop Bit
When OEM machine programs receive a “Stop” command, this bit should
be set by the programs. It should be cleared by the OEM machine
programs when the “Stop” command is no longer valid.

 b_CmdHold Bit
When OEM machine programs receive a “Hold” command, this bit should
be set by the programs. It should be cleared by the OEM machine
programs when the “Hold” command is no longer valid.

 b_CmdUnhold Bit
When OEM machine programs receive a “UnHold” command, this bit
should be set by the programs. It should be cleared by the OEM machine
programs when the “UnHold” command is no longer valid.

 b_CmdSuspend Bit
When OEM machine programs receive a “Suspend” command, this bit
should be set by the programs. It should be cleared by the OEM machine
programs when the “Suspend” command is no longer valid.

 b_CmdUnsuspend Bit
When OEM machine programs receive a “UnSuspend” command, this bit
should be set by the programs. It should be cleared by the OEM machine
programs when the “UnSuspend” command is no longer valid.

 b_CmdAbort Bit
When OEM machine programs receive a “Abort” command, this bit should
be set by the programs. It should be cleared by the OEM machine
programs when the “Abort” command is no longer valid.

 b_CmdClear Bit
When OEM machine programs receive a “Clear” command, this bit should
be set by the programs. It should be cleared by the OEM machine
programs when the “Reset” command is no longer valid.

 b_CmdStateComplete Bit

When OEM machine programs receive a “State Complete” command, this
bit should be set by the programs. It should be cleared by the OEM
machine programs when the “State Complete” command is no longer
valid.

 b_cfg_RemoteCmdEnable Bit When OEM machine programs allow mode and state change commands
to be issued remotely, this bit should be set

 d_Inp_RemoteModeCmd Double
Word

This label contains the Remote Mode Command value and is the value of
the new mode the machine should transition to. The valid values are 0 –
31.

 b_Inp_RemoteModeCmdChangeRequest Bit When OEM machine programs request a remote mode change command,
this bit should be set

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 6 Custom Solutions Center Custom Solutions Center Engineering Group

Variable Label Data Type Description

 d_Inp_RemoteStateCmd Double
Word

This label contains the Remote State Command value and is the value of
the new state the machine should transition to. The valid State Command
values are defined as follows and others are ignored:

1: Reset
2: Start
3: Stop
4: Hold
5: UnHold
6: Suspend
7: UnSuspend
8: Abort
9: Clear

 b_Inp_RemoteStateCmdChangeRequest Bit When OEM machine programs request a remote state change command,
this bit should be set.

 b_StateClearing Bit This is a status bit. When it is set, the machine is in “Clearing” mode.

 b_StateStopped Bit This is a status bit. When it is set, the machine is in “Stopped” mode.

 b_StateStarting Bit This is a status bit. When it is set, the machine is in “Starting” mode.

 b_StateIdle Bit This is a status bit. When it is set, the machine is in “Idle” mode.

 b_StateSuspended Bit This is a status bit. When it is set, the machine is in “Suspended” mode.

 b_StateExecute Bit This is a status bit. When it is set, the machine is in “Execute” mode.

 b_StateStopping Bit This is a status bit. When it is set, the machine is in “Stopping” mode.

 b_StateAborting Bit This is a status bit. When it is set, the machine is in “Aborting” mode.

 b_StateAborted Bit This is a status bit. When it is set, the machine is in “Aborted” mode.

 b_StateHolding Bit This is a status bit. When it is set, the machine is in “Holding” mode.

 b_StateHeld Bit This is a status bit. When it is set, the machine is in “Held” mode.

 b_StateUnHolding Bit This is a status bit. When it is set, the machine is in “UnHolding” mode.

 b_StateSuspending Bit This is a status bit. When it is set, the machine is in “Suspending” mode.

 b_StateUnSuspending Bit This is a status bit. When it is set, the machine is in “UnSuspending” mode.

 b_StateResetting Bit This is a status bit. When it is set, the machine is in “Resetting” mode.

 b_StateCompleting Bit This is a status bit. When it is set, the machine is in “Completing” mode.

 b_StateComplete Bit This is a status bit. When it is set, the machine is in “Complete” mode.

 b_ModeChangeNotAllowed Bit This is a status bit. When it is set, the mode change of the machine is not
allowed.

 d_Sts_StateCurrent Double
Word This label shows the current state of the machine.

 b_Sts_Modebits[0..31] Bit
This array label shows the current bit of the machine mode. It can be used
to as test conditions for machine programs. For example, when bit #2 of
the Sts_ModeBits is set, the State Machine is in the Maintenance mode.

 d_Sts_ModeCurrent Double
Word

This label shows the current mode of the machine. The values are as
defined in the CmdMode label of this table.

5.2 OEM_Template_PackML_Labels
This group contains global labels that are used by Unit Machine and Equipment Modules to operate PackML states and
commands. The Structure Data Type PackM_Module_Cmd is defined to support the operations.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 7 Custom Solutions Center Custom Solutions Center Engineering Group

Label Data Type Description

gvst_ EM00_PackML_Sts PackML_Module_Cmd_SDT
The label indicating the PackML commands and status of Equipment Module
EM00 (which is the aggregate of all the Control Modules within the Equipment
Module)

gvst_ EM01_PackML_Sts PackML_Module_Cmd_SDT
The label indicating the PackML commands and status of Equipment Module
EM01 (which is the aggregate of all the Control Modules within the Equipment
Module)

gvst_ UN_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of the Unit Machine
(which is the aggregate of all Equipment Modules)

gvst_ EM00_CM00_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM00_CM00

gvst_ EM00_CM01_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM00_CM01

gvst_ EM00_CM02_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM00_CM02

gvst_ EM00_CM03_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM00_CM03

gvst_ EM01_CM00_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM01_CM00

gvst_ EM01_CM01_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM01_CM01

gvst_ EM01_CM02_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM01_CM02

gvst_ EM01_CM03_PackML_Sts PackML_Module_Cmd_SDT The label indicating the PackML commands and status of Control Module
EM01_CM03

gvb_ RemoteCmd_ResetAllTimes Bit The command that comes from external to the machine to reset all the timers
within the PackML State Machine of this Unit Machine.

5.2.1. PackML_Module_Cmd Structured Data Type
This structured data type is used by each Equipment or Control Module to issue PackML commands as well as
reflects its PackML state status.

Label Data Type Description

b_Cmd_Reset Bit When the bit is set TRUE, the Control Module is issuing a “Reset” command to the
State Machine.

b_Sts_Resetting_SC Bit When “Resetting” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_Start Bit When the bit is set TRUE, the Control Module is issuing a “Start” command to the State
Machine.

b_Sts_Starting_SC Bit When “Starting” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_Stop Bit When the bit is set TRUE, the Control Module is issuing a “Stop” command to the State
Machine.

b_Sts_Stopping_SC Bit When “Stopping” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_Hold Bit When the bit is set TRUE, the Control Module is issuing a “Hold” command to the State
Machine.

b_Sts_Holding_SC Bit When “Holding” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_UnHold Bit When the bit is set TRUE, the Control Module is issuing an “Unhold” command to the
State Machine.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 8 Custom Solutions Center Custom Solutions Center Engineering Group

Label Data Type Description

b_Sts_UnHolding_SC Bit When “UnHolding” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_Suspend Bit When the bit is set TRUE, the Control Module is issuing a “Suspend” command to the
State Machine.

b_Sts_Suspending_SC Bit When “Suspending” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_UnSuspend Bit When the bit is set TRUE, the Control Module is issuing a “UnSuspend” command to
the State Machine.

b_Sts_UnSuspending_SC Bit When “UnSuspending” state operations are completed, this bit is should be set to
send a “State Complete” command to the State Machine.

b_Cmd_Abort Bit When the bit is set TRUE, the Control Module is issuing an “Abort” command to the
State Machine.

b_Sts_Aborting_SC Bit When “Aborting” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Cmd_Clear Bit When the bit is set TRUE, the Control Module is issuing a “Clear” command to the
State Machine.

b_Sts_Clearing_SC Bit When “Clearing” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Sts_Execute_SC Bit When “Execute” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_Sts_Completing_SC Bit When “Completing” state operations are completed, this bit is should be set to send a
“State Complete” command to the State Machine.

b_ONS Bit The internal flag bit that is used for an one-shot Function Block

b_ModuleActive Bit When this bit is set, it indicates that the control module is active

5.3 OEM_Template_PackML_GOT_Keys
This group of global labels is defined in the template to support the User Interface Screens that are parts of the PackML
template. The user interface screens are implemented in the Mitsubishi GT-16 GOT hardware. These screens can be
easily modified and used by the actual OEM machine control project. The descriptions of GOT screens and GT Designer
projects are documented in Part 7 of the Users Guide.

The GOT interface programs of the PackML Template Project are implemented as Control Module CM01 of Equipment
Module 00 as examples. The user can implement any operator interface routines in other control modules when
appropriate.

Label Data Type Description

svb_GOT_ProdMode Bit Reflecting the status of “Produce Mode” key on the GOT

svb_GOT_MaintMode Bit Reflecting the status of “Maintenance Mode” key on the GOT

svb_GOT_ManualMode Bit Reflecting the status of “Manual Mode” key on the GOT

svb_GOT_User1Mode Bit Reflecting the status of “User Mode 1” key on the GOT

svb_GOT_User2Mode Bit Reflecting the status of “User Mode 2” key on the GOT

svb_GOT_ResetKey Bit Reflecting the status of “Reset Command” key on the GOT

svb_GOT_StartKey Bit Reflecting the status of “Start Command” key on the GOT

svb_GOT_HoldKey Bit Reflecting the status of “Hold Command” key on the GOT

svb_GOT_StopKey Bit Reflecting the status of “Stop Command” key on the GOT

svb_GOT_UnHoldKey Bit Reflecting the status of “UnHold Command” key on the GOT

svb_GOT_AbortKey Bit Reflecting the status of “Abort Command” key on the GOT

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 9 Custom Solutions Center Custom Solutions Center Engineering Group

svb_GOT_ClearKey Bit Reflecting the status of “Clear Command” key on the GOT

svb_GOT_SuspendKey Bit Reflecting the status of “Suspend Command” key on the GOT

svb_GOT_UnSuspendKey Bit Reflecting the status of “UnSuspend Command” key on the GOT

svb_GOT_StateCompleteKey Bit Reflecting the status of “State Complete Command” key on the GOT

svb_GOT_ClearAllTimesKey Bit Reflecting the status of “Clear All Timers” key on the GOT

svb_GOT_ClearCurrModeTimeKey Bit Reflecting the status of “Clear Current Mode Timers” key on the GOT

svw_GOT_Screen_Switch Word[Signed] Label that is used to instruct the GOT which screen to display.

5.4 OEM_Template_Event_Labels
This group of global labels is defined in the template to support the event handling functions. The descriptions of the
Structured Data Types are documented in Part 5 of the Users Guide where Event Handling Function Blocks are
described.

Label Data Type Description

gvsta_AlarmCfg SDT_EventCfg(0..19) This array is used to define the information of alarms in the system such
as ID, Value, Alarm message, and Category.

gvst_ZeroEvent SDT_Event This structure is used to initialize any list of events.

gvst_AlarmStatus_EM00 SDT_EventStatus This structure contains the event status for Equipment Module 00

gvsta_AlarmStatus_Event_EM00 SDT_Event(0..29) This event list contains the events of Equipment Module 00. The array
size is pre-defined to 30.

gvst_AlarmStatus_FirstOut_EM00 SDT_Event This structure is used to hold the First Out Event of Equipment Module
00

gvsta_AlarmStatus_FirstOutCat_EM00 SDT_Event(0..9) This array of structures is used to hold the First Out Event of each event
category of Equipment Module 00

gvst_AlarmStatus_EM01 SDT_EventStatus This structure contains the event status for Equipment Module 01

gvsta_AlarmStatus_Event_EM01 SDT_Event(0..29) This event list contains the events of Equipment Module 01. The array
size is pre-defined to 30.

gvst_AlarmStatus_FirstOut_EM01 SDT_Event This structure is used to hold the First Out Event of Equipment Module
01

gvsta_AlarmStatus_FirstOutCat_EM01 SDT_Event(0..9) This array of structures is used to hold the First Out Event of each event
category of Equipment Module 01

gvst_AlarmSummation SDT_EventSummation This structure contains the Event Summation status of the Unit Machine

gvst_AlarmSummation_FirstOut SDT_Event This structure is used to hold the First Out Event of the Unit Machine

gvsta_AlarmSummation_FirstOutCat SDT_Event(0..9) This array of structures is used to hold the First Out Event of each event
category of the Unit Machine

gvsta_AlarmSummation_Events SDT_Event(0..99) This event list contains the events of Unit Machine. The array size is pre-
defined to 100.

gvsta_AlarmSortedList SDT_Event(0..399) This event list is used to sort the events of the Unit Machine.

5.5 OEM_Template_Event_GOT_Keys
This group of global labels is defined in the template to support the Event Handling Test Screen that is a part of the
PackML template. The Event Handling Test Screen is implemented in the Mitsubishi GT-16 GOT hardware. The screen
can be easily modified and used by the actual OEM machine control project. The descriptions of GOT screens and GT
Designer projects are documented in Part 7 of the Users Guide.

The Event Handling Test Screen programs of the PackML Template Project are implemented as Control Module CM02
of Equipment Module 00 and Control Module CM02 of Equipment Module 01 as examples. The user can implement
any operator interface routines in other control modules when appropriate.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 10 Custom Solutions Center Custom Solutions Center Engineering Group

Label Data Type Description

svb_GOT_GuardDoorOpenKey1 Bit Bit to set or clear “Guard Door Open” error for EM01

svb_GOT_AbortKey1 Bit Bit to set or clear “Abort” error for EM01

svb_GOT_LowMaterialKey1 Bit Bit to set or clear “Low Materials” error for EM01

svb_GOT_StopKey1 Bit Bit to set or clear “Stop” error for EM01

svb_GOT_RemoteStopKey1 Bit Bit to set or clear “Remote Stop” error for EM01

svb_GOT_ESTOPKey1 Bit Bit to set or clear “E-Stop” error for EM01

svb_GOT_MGFaultKey1 Bit Bit to set or clear “Motion Group Fault” error for EM01

svb_GOT_GuardDoorOpenKey Bit Bit to set or clear “Guard Door Open” error for EM00

svb_GOT_EventAbortKey Bit Bit to set or clear “Abort” error for EM00

svb_GOT_LowMaterialKey Bit Bit to set or clear “Low Materials” error for EM00

svb_GOT_EventStopKey Bit Bit to set or clear “Stop” error for EM00

svb_GOT_RemoteStopKey Bit Bit to set or clear “Remote Stop” error for EM00

svb_GOT_ESTOPKey Bit Bit to set or clear “E-Stop” error for EM00

svb_GOT_MGFaultKey Bit Bit to set or clear “Motion Group Fault” error for EM00

6 PackML Template Project Program Organization Units
6.1 Initialization POU

6.1.1. Equipment Module PackML Initialization POUs
EM00_Init and EM01_Init are two POUs that perform the initialization of PackML related labels only during the
first scan of the PLC. It is important to note that an OEM using this PackML Template Project will need to add the
necessary operation-related initialization code for each equipment module.

The EM00_Init and EM01_Init functions are identical except that labels corresponding to each equipment module
are initialized in their respective POU. Figure 4 shows the Structured Ladder code. The label with the
PackML_Module_Cmd Structured Data Type of each Control Module in the Equipment Module is input to the
Function Block PackML_Cmd_Sts_Init and all PackML commands and status are initialized to the default values.

Figure 4 – Equipment Module PackML Initialization

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 11 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 5 below shows the actual code of the PackML_Cmd_Sts_Init function block. The initialization routine clears
all PackML commands and set the State Complete status for states that require StateComplete flags to transition.

Figure 5 Function Block: PackML_Cmd_Sts_Init

6.1.2. Unit Machine PackML Initialization POUs
PackML_UnitMachine_SetUp is used to configure PackML modes and states for the Unit Machine and set up initial
alarm configurations and zero event parameters.

The structured ladder programs of this POU included in the PackML Template Project are used to configure the
modes and states for this template system only. This POU needs to be modified by the OEM to properly configure
his Unit Machine to represent the actual modes and states of the machine.

The functions of this POU include:

• Configuring names of all modes available in the Unit Machine,

o i.e. populating global variable PackML_ModeNames[0..31]

• Configuring names of all states available in the Unit Machine,

o i.e. populating global variable PackML_StateNames[0..31]

• Defining all states within each mode that mode transitions are allowed,

o i.e. defining global variable Gvba_PackML_cfgModeTransitions[0..31, 0..17]

• Defining all states that are not required in each mode,

o i.e. defining global variable PackML_cfgDisableStates[0..31, 0..17]

• Defining the initial mode and state of the Unit Machine,

o In the Template System, the Unit Machine is set to “Manual Mode” and “Stopped State”

• Selecting the GOT screen to be displayed based on the mode of the Unit Machine,

• Configuring event information for all events in the Unit Machine,

• Configuring event handling parameters for proper operation.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 12 Custom Solutions Center Custom Solutions Center Engineering Group

6.2 Unit Machine Level POUs
It is recommended that a user should refer to the actual structured ladder logic code in the Mitsubishi PackML
Implementation Template project to get a better understanding of the functions of these POUs.

6.2.1. UM_Main
The purpose of this POU is to control the flow of the other routines at the Unit Machine level. It contains all the
calls to all other unit machine level POUs.

Since the Event Summation and Sorting functions do not have to be executed on every scan to save overall
machine scan time, a timer is programmed to call the UM_EventControl subroutine every second. A user can
modify this time period to make the system operate appropriately per application requirements.

6.2.2. PackML_Main
This POU operates the PackML state machine and its functions include:

• Aggregating PackML commands and status of all equipment modules,

o If there are more than two equipment modules in the Unit Machine, this part of the template
routine needs to be modified to include commands and status from the additional equipment
modules

• Setting proper PackML command or status based on the aggregated results,

• Calling the PackML_ModeStateManager function block to set the PackML state machine in the correct
mode and state and then clearing the command and status

• Calling the PackML_ModeStateTimes function block to accumulate the time in the current mode and state.

6.2.3. UM_LineComm
The purpose of this POU is to handle PackML commands external to the Unit Machine. The commands may come
from a Unit Machine downstream or Upstream. The current PackML Template project does not include the code to
handle remote command communication.

It is assumed that an external system uses the PackTags Cmd_UnitMode and Cmd_CntrlCmd to configure the
desired mode and command the Unit Machine needs to handle respectively. Then the remote machine can enable
the PackTags Cmd_UnitModeChangeRequest and Cmd_CmdChangeRequest to initiate the remote operations.

The code in this POU is simply to take the remote commands and enable the proper labels within the template
project and the PackML_Main POU will function accordingly.

6.2.4. UM_EventControl
The purpose of this POU is to aggregate events and alarms from all equipment modules and handle them at the
Unit Machine level.

In the PackML Template, the events from Equipment Modules 00 and 01 are summed into an overall list
AlarmSummation at the Unit Machine level. The Event_Sort FB can then be used to perform filtering and sorting
functions on the list. The details of filtering and sorting functions are documented in Part 5 of the Users Guide.

6.3 Equipment Module Level POUs
Programs of each Equipment Module are grouped in the Program File EMxx and Task EMxx. In the Template Project,
each equipment module contains the main POU, an event control POU, three control module POU’s, and a PackML
Command Summation POU. For an actual implementation, the OEM can add or subtract the control module POU’s as
appropriate.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 13 Custom Solutions Center Custom Solutions Center Engineering Group

6.3.1. EMxx_Main
The purpose of this POU is to control the flow of the other routines at the Equipment Module level. It contains all
the calls to all other equipment module level POUs.

6.3.2. EMxx_CMnn_Routine
This POU contains the logic for Control Module nn of this particular equipment module xx. The OEM should
incorporate the appropriate control logic in this POU to perform the actual control functions. For an actual
implementation, the OEM can add or subtract control module POU’s as appropriate. The names of these POU’s can
also be modified to better reflect the actual control module functions, for example, instead of
EM00_CM01_Routine, the POU can be named as Filling_Station_HMI_Interface.

In the Mitsubishi PackML Implementation Template project, EM00_CM01_Routine contains the GOT interface
routine for PackML state and mode transitions. It takes the key pressed on the GOT and set or reset the proper
flags to drive the PackML state machine operations. EM00_CM02_Routine and EM01_CM02_Routine contain the
GOT interface routine for simulating events in the Unit Machine through GOT key presses.

6.3.3. EMxx_EventControl
The purpose of this POU is to use the Event_Manager FB to aggregate events from all control modules into the
equipment module level. It also contains the logic to issue PackML Stop or Abort command depending on which
category of events have occurred.

This EventControl is referred to as Control Module 00 of the equipment module.

6.3.4. EMxx_PackML_Cmd_Sum
The purpose of this POU is to aggregate all PackML related commands and status from all control modules of this
particular equipment module.

The consolidated command or status will then be used in the PackML_Main POU to set the command and status at
the Unit Machine level.

6.4 POU Scan Order
The scan order of all the POU’s is shown in Figure 6 below:

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 14 Custom Solutions Center Custom Solutions Center Engineering Group

First Scan
only

EM00_Init EM01_Init EMxx
PackML_Unit
Machine_Set

Up

PackML_Main UM_LineComm UM_EventControl

EM00_CM01_
Routine

EM00_CM02_
Routine

EM00_CMnn_
Routine

EM00_
EventControl

EM00_PackML
_Cmd_Sum

EM00_Main

UM_Main

EM01_CM01_
Routine

EM01_CM02_
Routine

EM01_CMnn_
Routine

EM01_
EventControl

EM01_PackML
_Cmd_Sum

EM01_Main

EMxx_CM01_
Routine

EMxx_CM02_
Routine

EMxx_CMnn_
Routine

EMxx_
EventControl

EMxx_PackML
_Cmd_Sum

EMxx_Main

Other Equipment Module, if any

Figure 6 – PackML Implementation Template POU Scan Order

7 PLC CPU Parameters and Settings
This section contains the PLC CPU parameter settings for the PackML Implementation Template project.

7.1 PLC System Parameters
Most the parameters on this screen are default parameters except the Common Pointer number that was set at 2000
so that pointer values greater than 2000 are assigned by the project manually and not automatically assigned.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 15 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 7 – PLC Parameters, PLC System Settings

7.2 PLC File Parameters
Because of the large number of PackTags and labels that are required to support the PackML and Event Handling
functions, a File Register system is configured to support the these labels.

It is critical to assign the File Registers to “Standard RAM (Drive 3)” so the labels are stored in the Standard RAM area of
the Q06UDEHCPU. If the File Registers are assigned to the Memory Card (Drive 1), they will have significant impact on
the scan time of the project when Event Handling routines are being scanned.

The capacity of the File is set at 300K points but can be adjusted according to the application needs. The limitation will
be the amount of Standard RAM memory size of the PLC. Q06UDEHCPU has 1024K Standard RAM.

Figure 8 – PLC Parameters, PLC File Settings

7.3 Device Settings
The key settings on this screen are the allocated size for ZR registers (180K points) and Extended Data registers (120K
points) to support automatic allocation of labels and pre-defined PackTags in D Registers.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 16 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 9 – PLC Parameters, Device Settings

7.4 I/O Assignments
For the template project, there are only two modules in the system and the I/O assignments are defined by iQ Works
module configurations. For an actual system with additional CPU, I/O, or Intelligent I/O modules, the configurations of
these modules should also be done in the iQ Works MELSOFT Navigator and the I/O assignments will be reflected here.
The assignments can be overwritten if the option in GX Works 2 is enabled by selecting the checkbox in Tool-> Options
-> iQ Works Interaction.

Figure 10 – PLC Parameters, I/O Assignment Settings

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 17 Custom Solutions Center Custom Solutions Center Engineering Group

7.5 Multiple CPU Setting
The template system only has two CPUs, the PLC and the Motion Controller. In the template project, the motion CPU is
not programmed. However, the basic parameter settings are shown here for references.

Figure 11 – PLC Parameters, MultiCPU Settings

Figure 12 – PLC Parameters, Auto Refresh Settings

The Auto Refresh settings shown here are just for example purposes only. There need to be configured to represent
the actual system requirements.

7.6 Built In Ethernet Port Setting
The Built-In Ethernet port is configured so that it can be used with the Kepware OPC server to send PackTags data to
external systems. It is also used to communicate with the GOT in the system.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 18 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 13 – PLC Parameters, Built-In Ethernet Port Settings

Figure 14 – PLC Parameters, Built-In Ethernet Port Open Settings

7.7 Device Label Automatic Assignments
Use “Tool -> Device/Label Automatic-Assign Setting…” to configure the system where labels should be assigned.

Figure 15 – Configuring Device Label Automatic Assignments

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 19 Custom Solutions Center Custom Solutions Center Engineering Group

The range of automatic assignment of “Word” labels is allocated to ZR registers from ZR0 to ZR183190. The range of
automatic assignment of “Bit” labels is allocated to M bits M3000 to M8000. The rest of the ranges are left with default
values.

Figure 16 – Label Automatic Assignment Settings

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 20 Custom Solutions Center Custom Solutions Center Engineering Group

8 Program Memory Space
The full PackML template requires about 245K of program memory to execute. The Q06UD(E) CPU capacity for standard
RAM is 245K. This means that the PackML template with the additional OEM code will not fit in the standard program
memory location of Q06UD(E) CPU. To overcome this program memory constraint, download the “Symbolic Information” to
the “Standard ROM” instead of program memory. This will reduce the amount of the required program memory size down
to 138K, leaving 107K for OEM code.

The minimum set PackML template only requires 111K of program memory. If the symbolic information is downloaded to
the standard ROM location, the size of program can be further reduced to 42K.

The following table shows the amount of available program memory in Q series PLCs.

Model Number Q03UD(E)CPU Q04UD(E)CPU Q06UD(E)CPU Q13UD(E)CPU Q26UD(E)CPU
Program Memory 120kB 160kB 240kB 520kB 1040kB
Standard ROM 1024kB 2051kB 4102kB
Model Number Q03UDVCPU Q04UDVCPU Q06UDVCPU Q13UDVCPU Q26UDVCPU
Program Memory 120kB 160kB 240kB 520kB 1040kB
Standard ROM 1025.5kB 2048kB 4096kB

Amount of PLC program memory space required for PackML template

Template Version Full PackML Template
Minimum PackML
Template

PLC Program and symbolic
information stored in Program
memory

292kB 111kB

PLC Program stored in
program memory and
symbolic info stored in
standard ROM

147kB 46kB

8.1 Downloading Symbolic Information File to the PLC Standard ROM location to save program
memory space

• By default, GX Works downloads the PLC data (program files, comments and parameters) and the Symbolic
Information to the Program Memory/Device Memory as shown in the figure below:

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 21 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 17 – Downloading to program memory

• Click on the “Program Memory/Device Memory” box to the right of Symbolic Information and select the “Standard
ROM” option in the drop down box.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 22 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 8 – Downloading the symbolic information to the standard ROM

• Notice that the “Writing Size” was reduced to 42,208 Bytes from 111,600 Bytes.

• Download the program to the PLC.

9 This section documents the steps that an OEM will take to add the
POU’s Example of Adding an Equipment Module to the Template System

This section documents the steps that an OEM will take to add the POU’s of an additional equipment module (e.g. EM02) in
the PackML Implementation Template Project.

9.1 Adding EM02_Init POU
• Right Click on EM01_Init Task in the “Initial Program ->MainInit” tree and select copy.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 23 Custom Solutions Center Custom Solutions Center Engineering Group

• Right click on MainInit Task and select Paste.

• A pop-up window will be displayed and allow the user to enter a new name “EM02_Init” for the new Task. The
EM02_Init Task is then added to the tree.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 24 Custom Solutions Center Custom Solutions Center Engineering Group

• Right Click on EM01_Init POU in the “Initial Program ->MainInit -> EM01_Init” tree and select copy.

• Right Click on the EM02_Init Task and select Paste to copy the POU

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 25 Custom Solutions Center Custom Solutions Center Engineering Group

• A pop-up window will be displayed and allow the user to enter a new name “EM02_Init” for the new program
block or POU. The EM02_Init program block is then added to the tree.

• The red circle X across the EM02_Init task indicates that there are errors associated with this new Task that
was created. Right click on the EM02_Init Task and select “Open Task Setting”.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 26 Custom Solutions Center Custom Solutions Center Engineering Group

• The Task setting shows that both EM01_Init and EM02_Init are under this task since the EM02_Init task was
copied from the EM01_Init Task which has program file EM01_Init.

• Simply delete EM01_Init from the Task Setting of EM02_Init Task and the red circle with the x should
disappear from EM02_Init Task

• Double Click on the “Program” in the new EM02_Init Program Block and it will display the logic which is the
exact copy of the logic in EM01_Init POU.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 27 Custom Solutions Center Custom Solutions Center Engineering Group

• Create new global variables EM02_CM00_PackML_Sts, EM02_CM01_PackML_Sts, EM02_CM02_PackML_Sts,
and EM02_CM03_PackML_Sts with structured data type “PackML_Module_Cmd” in the Group
OEM_Template_PackML_Labels.

• Edit the EM02_Init logic to use the proper labels and correct instances of the initialization function block.

9.2 Adding EM02 Program File
• Right Click on the Scan Program in the project tree and select “Add New Data…”

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 28 Custom Solutions Center Custom Solutions Center Engineering Group

• A pop-up window will appear and enter the new name of the Program File “EM02”and the new program file
will be added to the project tree.

• Right Click on the EM01 Task and select “Copy”.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 29 Custom Solutions Center Custom Solutions Center Engineering Group

• Right Click on the EM02 Program File and select “Paste”.

• A pop-up window will appear and that new task name EM02 can be entered.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 30 Custom Solutions Center Custom Solutions Center Engineering Group

• Select all POU’s under the task EM01 and click “Copy”

• Right Click on the EM02 Task and select “Paste”.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 31 Custom Solutions Center Custom Solutions Center Engineering Group

• Pop-Up windows will appear to allow the user to enter the new names of the POUs. Repeat the process until
all POU’s are renamed.

• The red circle X across the EM02 task indicates that there are errors associated with this new Task that was
created. Right click on the EM02 Task and select “Open Task Setting”.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 32 Custom Solutions Center Custom Solutions Center Engineering Group

• The Task setting shows that both EM01 POU’s and EM02 POU’s are under this task since the EM02 task was
copied from the EM01 Task which has all program files from EM01

• Simply delete EM01 POU’s from the Task Setting of EM02 Task and the red circle with the x should disappear
from EM02 Task

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 33 Custom Solutions Center Custom Solutions Center Engineering Group

• Double Click on the “Program” in the new EM02_Main Program Block and it will display the logic which is the
exact copy of the logic in EM01_Main POU. Create new global labels associating with EM02 and then edit the
labels in the program to use the new labels. Modify the pointers to point to proper subroutines also. For
example, the first subroutine call is using pointer P2040.

• For example, double click the EM02_CM01_Routine and ensure the label block pointer value is revised to the
proper pointer label, i.e. P2041. Repeat the steps for all subroutines. OEMs need to add the necessary control
code in this POU.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 34 Custom Solutions Center Custom Solutions Center Engineering Group

• Edit the EM02_PackML_Cmd_Sum routine to replace all labels from references to EM01 to EM02.

9.3 Modifying PackML_Main Routine
The PackML commands and status from the newly added module EM02 need to be added to the PackML_Main routine
so that they can be used to determine the transitions of the state machine properly.

Following is a portion of the PackML_Main routine showing the aggregation of “Reset” command signals and
“Resetting” state “State Complete” signals for EM00 and EM01.

These rungs of logic need to be modified to include the signals from the newly added equipment module EM02. The
resulting rungs are shown below:

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 35 Custom Solutions Center Custom Solutions Center Engineering Group

Similar modifications need to be done for all commands and status signals in PackML_Main for all new equipment
modules added to the system.

10 Example of Adding a Control Module to the Template System
This section documents the steps that an OEM will take to add the POU’s of an additional control module (e.g. CM04) in a
particular equipment module (e.g. EM01) in the PackML Implementation Template Project.

• Right click on one of the CM routine and select “Copy”.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 36 Custom Solutions Center Custom Solutions Center Engineering Group

• Right Click on the Task EM01 and select “Paste”.

• A pop-up window will appear for the user to enter a new POU name and the new POU is added to the Task.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 37 Custom Solutions Center Custom Solutions Center Engineering Group

• Double Click the new program routine to open the editing window.

• Make the necessary modification to the Jump label and Title. The OEM needs to add the appropriate control
code in this POU.

• In the EM01_Main POU, add the new “Call to Subroutine” instruction to call the new control module
EM01_CM04_Routine.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 38 Custom Solutions Center Custom Solutions Center Engineering Group

11 Issuing PackML Commands in a Machine Program
The purpose of this section is to show how PackML commands can be issued in OEM’s machine control code to cause the
Unit Machine State diagram to transition from the current state to the desired next state.

The key steps that need to be programmed regarding a state transition are:

• Reset the command(s) that caused the transition from the previous state to the current state.

• Issue the command that will cause the transition from the current state to the desired next state.

• Clear all commands that may cause the transition away from the desired next state.

The following two examples illustrate the use of these steps to ensure proper state transition.

11.1 Example 1: Transition from Producing Mode Starting State to Execute State

Figure 20 – Producing Mode State Model

If the Unit Machine is in the Producing Mode, Starting state as shown in the State Model in Figure 17, when the
execution of the machine control logic of Equipment Module 00 and Control Module 02 in the Starting State is
completed, the State Machine should proceed to the “Execute State” when the Starting State “State Complete” (SC)
command is issued.

In order to cause this transition of states, the following logic can be used:

Figure 21 – Sample Ladder Logic for Handling PackML Commands

• The command EM00_CM02_PackML_Sts.Sts_Starting_SC is set to command the transition from the Starting
State to the Execute State.

• The command EM00_CM02_PackML_Sts.Cmd_Start should be reset. The Start command must have been
issued earlier in the machine control logic to cause the machine to transition to the Starting state. Thus it is a
good practice to reset the command when leaving the Starting State to avoid any error by leaving the Start

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 6: OEM PackML Template Program Structure and Implementation

Part 6 – Page 39 Custom Solutions Center Custom Solutions Center Engineering Group

Command active. The Start Command can actually be reset earlier in the Starting State machine control logic if
the user chooses to.

• Referring to the State Model in Figure 17, the Execute State can potentially transition to one of the “Holding”,
“Completing” and “Suspending” states depending on the PackML command that will be issued when the
Execute State logic is complete. It is important that the commands causing the State Model to transition from
the Execute State be reset so that the State Model will be transitioned to and remain in the Execute State
properly. Thus, referring to Figure 18, the following commands EM00_CM02_PackML_Sts.Sts_Execute_SC,
EM00_CM02_PackML_Sts.Cmd_Hold, and EM00_CM02_PackML_Sts.Cmd_Suspend should be reset.

11.2 Example 2: Transition from Manual Mode Execute State to Stopping State

Figure 22 – Manual Mode State Model

Assuming the Unit Machine is in the Manual Mode, Execute state as shown in the State Model Figure 19. During the
execution of the Execute State machine control logic in Equipment Module 00 and Control Module 02, it is necessary
for the machine to go into “Stop State”, the following logic can be used:

Figure 23 – Sample Ladder Logic for Handling PackML Commands

• The command EM00_CM02_PackML_Sts.Sts_Stopping_SC is set to command the transition from the Execute
State to Stopping State.

• The command EM00_CM02_PackML_Sts.Sts_Starting_SC should be reset assuming the machine is in the
Execute State from the Starting State. It is a good practice to reset the command when leaving the Execute
State to avoid any error by leaving the Sts_Starting_SC Command active.

• Referring to the State Model Figure 19, the Stopping State will transition to the Stopped State when the
execution in the Stopping State is complete.

o It is important to reset the EM00_CM02_PackML_Sts.Sts_Stopping_SC command to ensure the logic
of Stopping State is executed properly.

Release 3, Version 5

OEM PackML Implementation Templates
Part 7 – GOT Screens

Engineering Group

Users Guide

Part 7 – i Custom Solutions Center Custom Solutions Center Engineering Group

Content

1 Introduction ... 1

2 PackML Template System Architecture ... 1

3 GOT Communication Channel Configuration ... 1

4 Sample Screens .. 3

4.1 PackML Mode Screens ... 4

4.1.1. Producing Mode Screen ... 4

4.1.2. Maintenance Mode Screen .. 5

4.1.3. Manual Mode Screen ... 5

4.1.4. User Defined Mode 1 / User Defined Mode 2 Screen ... 6

4.2 Event Test Screen ... 6

Part 7 – ii Custom Solutions Center Custom Solutions Center Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3
Part 7: GOT Screens

Part 7 – Page 1 Custom Solutions Center Custom Solutions Center Engineering Group

1 Introduction
This document describes the example screens that are used with the Mitsubishi PackML Implementation Template project.
Many of the screens and screen elements can be used by OEMs on actual operator screens for the machine. The GT
Designer 3 project for the example screens is a part of the Mitsubishi PackML Implementation Template package.

The use of iQ Works system labels is described in Part 2 of the Mitsubishi PackML Implementation Template Users Guide.

2 PackML Template System Architecture
The PackML templates are designed to run on a system with the minimum of a QnUDEH PLC and a GOT-16 HMI. The system
architecture used to create the Mitsubishi PackML is shown in the following block diagram. The PLC is a Q06UDEHCPU and
the GOT is a GT-16s with the resolution of 800 x 600. Because of the large number of tags required to support the PackTags
specification, an extended memory card is required to be installed in the Q06UDEHCPU.

Ethernet Network Switch

Programming Laptop
192.168.1.5

GOT-16 (800x600)
192.168.1.90

iQ System

USB

Q06UDEH CPU
192.168.1.40

Channel 1

Q172D CPU

Figure 1 – Mitsubishi PackML Template System

The programming laptop is where the iQ Works is executed. The laptop is connected to the GOT using the USB port to
download screen information and to the Q06UDEHCPU through the GOT Ethernet Transparent Mode. The Transparent
Mode is set up to go through the Ethernet port on the Q06UDEH CPU (with IP Address 192.168.1.40). During the system
operation, GOT is configured to work with the iQ PLC through the same Q06UDEHCPU Built-in Ethernet port.

3 GOT Communication Channel Configuration
The GOT in the Template system uses the USB port to communicate with the programming laptop and an Ethernet channel
to communicate with the PLC.

When using iQ Works to define the system architecture, the communication channel between GOT and the PLC should have
already been set up.

In Figure 2 below, all parameters shown with the green background are defined in iQ Works and transferred over to the GT
Designer 3.

 Mitsubishi PackML Implementation Templates – Release 3
Part 7: GOT Screens

Part 7 – Page 2 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 2 – Communication Channel 1 Configuration

Select the “Ethernet” in Network/Duplex Setting to set the channel 1 as the Host to the PLC.

Figure 3 – Setting Channel 1 As Host

 Mitsubishi PackML Implementation Templates – Release 3
Part 7: GOT Screens

Part 7 – Page 3 Custom Solutions Center Custom Solutions Center Engineering Group

And then select the Communication Setting to verify all parameters.

Figure 4 – Verifying Channel 1 Communication Settings

One should ensure the configurations are correct. If for whatever reasons the parameters do not match with the actual
system configuration, one can select Tools -> Options -> iQ Works Interaction tab as shown in Figure 5 and check the box to
enable editing of parameters set in MELSOFT Navigator. However, the best practice is to make the necessary changes in the
Navigator and “reflect” the parameters using the methods described in Part 2 of the Users Guide.

Figure 5 – Option to Modify Parameters Set in iQ Works

4 Sample Screens
Six sample screens, consisting of five PackML Mode Screens and one Event Test Screen, are included in the Template
project.

Each screen of PackML Mode Screens displays the state machine of the mode and the accumulated and current time values
for the mode and states. Keys are provided for the user to change modes, reset timers, and issue PackML commands. The
state machine will display the transition of the states and highlight the state the state machine is in. The Event Test Screen
has total of 14 keys that generate simulated events in the Template system. The details of this screen are described in this
section.

Elements on these screens can be copied and used on other screens created by OEMs.

 Mitsubishi PackML Implementation Templates – Release 3
Part 7: GOT Screens

Part 7 – Page 4 Custom Solutions Center Custom Solutions Center Engineering Group

4.1 PackML Mode Screens
The PackML Mode Screens are used to demonstrate the PackML state and mode transition functions and display timer
values PackML states and modes.

The functions of these screens are documented below:

• This screen of a particular mode displays the state diagram of the mode and the active state is highlighted and
shown in Current Machine State display box.

• The Current Machine Mode is shown in the “Current Machine Mode” display box

• The Mode keys at the bottom of the screen allows the Unit Machine to change Mode and the screen of the
new mode will be displayed. If the Unit Machine is at a state that mode change is not allowed, the “Mode
Change Not Allowed” lamp will be lit.

• All timer values valid for the particular mode are displayed. Reset Current Mode Times and Rest All Times keys
will reset the proper timers accordingly.

• The PackML Command Keys simulate commands to the State Machine and will cause state transition

4.1.1. Producing Mode Screen

Figure 6 – Producing Mode Screen

 Mitsubishi PackML Implementation Templates – Release 3
Part 7: GOT Screens

Part 7 – Page 5 Custom Solutions Center Custom Solutions Center Engineering Group

4.1.2. Maintenance Mode Screen

Figure 7 – Maintenance Mode Screen

4.1.3. Manual Mode Screen
The Manual Mode Screen has an additional key “Go To Event Test Screen” which allows the Event Simulation
screen to be displayed and events being generated.

Figure 8 – Manual Mode Screen

 Mitsubishi PackML Implementation Templates – Release 3
Part 7: GOT Screens

Part 7 – Page 6 Custom Solutions Center Custom Solutions Center Engineering Group

4.1.4. User Defined Mode 1 / User Defined Mode 2 Screen

Figure 9 – User Defined Mode Screen

4.2 Event Test Screen
The purpose of Event Test Screen is to allow a user to simulate an event being generated and cleared in the Unit
Machine. When a key is pressed, an event is created and the event will remain active and the key will be lit. When the
key is pressed again, the event will be cleared and the light will be turned off.

The keys in the group EM00 will generate and clear events associated in Equipment Module 00. The logic to handle
these key presses is in EM00_CM02_Routines. Similarly, the keys in the group EM01 will generate and clear events
associated in Equipment Module 01. The logic to handle these key presses is in EM01_CM02_Routines.

Figure 10 – Event Test Screen

Release 3, Version 5

OEM PackML Implementation Templates
Part 8 – Minimum Set PackML Template

Engineering Group

Users Guide

Part 8 – i Custom Solutions Center Custom Solutions Center Engineering Group

Content

1 Introduction ... 1

2 Minimum PackML Template System Architecture .. 1

3 Minimum PackTags .. 1

4 Minimum States ... 3

5 Template PLC Program .. 3

5.1 Configuring States to be used .. 4

6 GOT Sample Screens .. 4

6.1 PackML Mode Screens ... 4

Part 8 – ii Custom Solutions Center Custom Solutions Center Engineering Group

Revision History

Version Revision Date Description

R2 V1.0 July 31, 2010 Initial release of PackML OEM Implementation Templates Release 2

R3 V1.0 June 31, 2014 Release of updated PackML OEM Implementation Templates Release 3

R3 V5 March 9, 2016 Release of updated PackML OEM Implementation Templates Release 3 V5

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 8: Minimum Set PackML Template

Part 7 – Page 1 Custom Solutions Center Custom Solutions Center Engineering Group

1 Introduction
This document describes the program structure of the Minimum Set PackML Implementation Template project. The
minimum set template is essentially a stripped down version of the full PackML implementation template. The purpose for
providing a minimum set template is to reduce the cost of the hardware and the complexity of the program. The minimum
template is ideal for simpler machines that do not require all the PackTags and states described in earlier sections of this
document.

The main differences are:

• Reduced hardware specifications

• Reduced set of PackTags

• Reduced number of PackML states

• No event handling FB

• Reduced States on the GOT screens

The implementation still uses the same function block library, but not all FBs are used in the sample program.

This document outlines the differences between the full implementation and the minimum implementation. Refer to other
parts of the documentation for information on how to use the FB, information on program structure, parameters, label
implementation etc.

2 Minimum PackML Template System Architecture
The minimum set PackML templates are designed to run on reduced system specifications when compared to the full
template. The PLC is a Q03UDEHCPU and the GOT is a GT-16s with the resolution of 640 x 480. There is also no need for an
extended memory card. System architecture with the reduced hardware is shown below.

Figure 1 – Mitsubishi PackML Template System

3 Minimum PackTags
The minimum required tags for a PackML compliant system is shown below.

Ethernet Network Switch

Programming Laptop
192.168.1.5 GOT-16 (640x480)

192.168.1.90

iQ System

USB

Q03UDEH CPU
192.168.1.40

Channel 1

Q172D CPU

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 8: Minimum Set PackML Template

Part 7 – Page 2 Custom Solutions Center Custom Solutions Center Engineering Group

Minimum Admin Tags

PackTag Specification GX Works 2 Labels

Tags Data
Type Label Data Type

UnitName.Admin.ProdProcessedCount[#].Count Int(32bit) gvsta_Adm_ProdProcessedCnt[#].d_Count Double
Word[Signed]

UnitName.Admin.ProdDefectiveCount[#].Count Int(32bit) gvsta_Adm_ProdDefectiveCnt[#].d_Count Double
Word[Signed]

UnitName.Admin.StopReason.ID Int
(32bit) gvst_Adm_AlarmStopReason.d_ID Double

Word[Signed]
Table 1: Minimum Admin Tags

Minimum Command Tags

PackTag Specification GX Works 2 Labels

Tags Data
Type Label Data Type

UnitName.Command.UnitMode Int
(32bit) gvd_Cmd_UnitMode Double

Word[Signed]
UnitName.Command.UnitModeChangeRequest Bool gvb_Cmd_UnitModeChangeRequest Bit

UnitName.Command.MachSpeed Real gvl_Cmd_MachSpeed FLOAT (Double
Precision)

UnitName.Command.MaterialInterlock Bool
Structure gvdu_Cmd_MaterialInterlocks

Double
Word[Unsigned]/Bit
String[32-bit]

UnitName.Command.CntrlCmd Int
(32bit) gvd_Cmd_CntrlCmd Double

Word[Signed]
UnitName.Command.CmdChangeRequest Bool gvb_Cmd_CmdChangeRequest Bit

Table 2: Minimum Command Tags

Minimum Status Tags

PackTag Specification GX Works 2 Labels

Tags Data
Type Label Data Type

UnitName.Status.UnitModeCurrent Int
(32bit) gvd_Sta_UnitModeCurrent Double

Word[Signed]

UnitName.Status.UnitModeRequested Bool gvb_Sta_UnitModeChangeRequested Bit

UnitName.Status.UnitModeChangeInProcess Bool gvb_Sta_UnitModeChangeInProcess Bit

UnitName.Status.StateCurrent Int
(32bit) gvd_Sta_StateCurrent Double

Word[Signed]

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 8: Minimum Set PackML Template

Part 7 – Page 3 Custom Solutions Center Custom Solutions Center Engineering Group

UnitName.Status.MachSpeed Real gvl_Sta_MachSpeed FLOAT (Double
Precision)

UnitName.Status.CurMachSpeed Real gvl_Sta_CurMachSpeed FLOAT (Double
Precision)

UnitName.Status.EquipmentInterlock Bool
Structure Sta_EquipmentInterlock SDT_Sta_EquipInt

erlock

UnitName.Status.EquipmentInterlock.Blocked Bool Sta_EquipmentInterlock.Blocked Bit

UnitName.Status.EquipmentInterlock.Starved Bool Sta_EquipmentInterlock.Starved Bit

Table 3: Minimum Status Tags

4 Minimum States
The full implementation of the PackML has 17 states. The minimum states required to be PackML compliant are 1 (Stopped),
3 (Idle), 7 (Execute) and 10 (Aborted).

State Name
1 STOPPED

2 STARTING

3 IDLE

4 SUSPENDING

5 SUSPENDED

6 UNSUSPENDING

7 EXECUTE

8 STOPPING

9 ABORTING

10 ABORTED

11 HOLDING

12 HELD

13 UNHOLDING

14 COMPLETING

15 COMPLETE

16 RESETTING

17 CLEARING
Table 4: Minimum Required Tags

It is up to the OEM programmer to decide how many states are needed for a particular application. The application may use
up to 17 states, but must implement the four base minimum states in order to be compliant with PackML. The next section
describes how to enable/disable states to match the application requirements.

5 Template PLC Program
The sample minimum set PLC program is basically a stripped down version of the full implementation template. The main
difference is that the template does not include logic for event control and uses only the minimum four PackML states
instead of the full 17.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 8: Minimum Set PackML Template

Part 7 – Page 4 Custom Solutions Center Custom Solutions Center Engineering Group

5.1 Configuring States to be used
To configure the states, modify the input parameters in the “PackMLStateDisable_Set(n)” FB instances in the
“PackML_UnitMachine_Setup” POU. By default, the inputs are set to “TRUE” which means that all the states except for
the minimum required states are set to disabled.

Figure 2: PackML_StatesDisable_Set Function Block

Now configure the “PackML_ModeTransition_Init_(n)” Fb instances to allow for transitions between states

Figure 3: PackML_ModeTransition Function Block

Now add logic to utilize the added states to the “EM00_PackML_Cmd_Sum” and “PackML_Main” to make use of the
states (copy logic from the full template).

6 GOT Sample Screens
Five sample screens, consisting of five PackML Mode Screens are included in the Minimum Set Template project.

Each screen of PackML Mode Screens displays the state machine of the mode and the accumulated and current time values
for the mode and states. Keys are provided for the user to change modes, reset timers, and issue PackML commands. The
state machine will display the transition of the states and highlight the state the state machine is in. The minimum four
states and their respective timers are shown on the screen.

Elements on these screens can be copied and used on other screens created by OEMs.

6.1 PackML Mode Screens
The PackML Mode Screens are used to demonstrate the PackML state and mode transition functions and display timer
values PackML states and modes. Only the four minimum required states and action buttons are displayed on the
screen.

 Mitsubishi PackML Implementation Templates – Release 3 V5
Part 8: Minimum Set PackML Template

Part 7 – Page 5 Custom Solutions Center Custom Solutions Center Engineering Group

Figure 4 – Producing Mode Screen

	Mitsuibishi PackML Implementation Users Guide - Cover R3 V5
	Mitsuibishi PackML Implementation Users Guide - Part 1 Overview R3 V5
	1 Introduction
	2 PackML Template System Architecture
	3 Mitsubishi PackML Template Key Components
	4 Mitsubishi PackML Template Program Structure
	5 PackML_R3_V1 Library
	6 High Level OEM Implementation Steps
	7 Minimum Set PackML Implementation Template
	8 Recommended CPU size for PackML Implementation
	9 Parts of the PackML Implementation Users Guide

	Mitsuibishi PackML Implementation Users Guide - Part 2 Navigator R3 V5
	1 Introduction
	2 MELSOFT Navigator Configuration
	2.1 Module Configuration
	2.2 Network Configuration
	2.3 Adding Programs to PLC and GOT
	2.3.1. Creating New PLC Program
	2.3.2. Adding Existing Programs
	2.3.3. Allocating Programs

	3 Registering Labels in the System Label Database
	4 Using the System Labels in the GOT Program
	4.1 Establish Route Information
	4.2 Setting Up System Labels for GOT Use
	4.3 Using the System Labels in GOT

	5 Summary

	Mitsubishi PackML Implementation Users Guide - Part 3 PackTags R3 V5
	1 Introduction
	2 Key PackTags Design Considerations
	3 PackTags Implementation Considerations
	4 iQ System Configuration
	4.1 PLC File
	4.2 Device
	4.3 Built-in Ethernet Port Setting

	5 GX Works2 Label Implementation
	5.1 Command Labels – PackTags_Command
	5.2 Status Labels – PackTags_Status
	5.3 Administrative Labels

	6 Kepware Server Configuration
	6.1 Adding a Channel of Communication
	6.2 Adding Devices

	7 Kepware Tags Implementation
	7.1 Creating the Tags

	8 PackTags Design Template Software Files
	Appendix A
	A.1 Command Tags – Spec to GX Works2 Labels
	A.2 Command Tags –GX Works2 Labels to Kepware Tags
	A.3 Status Tags – Spec to GX Works2 Labels
	A.4 Status Tags –GX Works2 Labels to Kepware Tags
	A.5 Admin Tags – Spec to GX Works2 Labels
	A.6 Admin Tags –GX Works2 Labels to Kepware Tags

	Mitsubishi PackML Implementation Users Guide - Part 4 PackML FB R3 V5
	1 Introduction
	2 Overview of PackML Library
	2.1 PackML Library Items
	2.2 Installing the PackML User Library
	2.3 PackML User Library Help

	3 Overview of PackML State and Mode Core Function Blocks
	4 Function Block: PackML_ModeStateManager
	4.1 Description
	4.2 Function Block Operations
	4.3 Function Block Local Variables

	5 Function Block: PackML_ModeStateTimes
	5.1 Description
	5.2 Timer_32Bit_Sec Function Block
	5.3 Function Block Operations
	5.4 Function Block Local Variables

	7 Example Use of the PackML Function Blocks
	7.1 Initialization Example
	7.2 Example of Calling Function Blocks

	Mitsubishi PackML Implementation Users Guide - Part 5 Event Handling R3 V5
	1 Introduction
	2 Overview of the Event Handling Philosophy
	3 Overview of the Alarm and Event Handling Function Blocks
	3.1 CM_Event Function Block
	3.2 Event_Manager Function Block
	3.3 Event_Summation Function Block
	3.3.1. Event_SummationBegin Function Block
	3.3.2. Event_SummationEnd Function Block

	3.4 Event_Sort Function Block

	4 Function Block: CM_Event
	4.1 Description
	4.2 Function Block Local Variables
	4.3 Event Related Structured Data Type
	4.3.1. SDT_Event Structured Data Type
	4.3.2. SDT_EventCfg Structured Data Type
	4.3.3. SDT_EventStatus

	4.4 Function Block Operations
	4.4.1. Examples of Alarm Data
	4.4.1.1. AlarmStatus_EM00
	4.4.1.2. AlarmStatus_Event_EM00 (when Event is active)
	4.4.1.3. AlarmStatus_Event_EM00 (when Event becomes inactive)

	5 Function Block: Event_Manager
	5.1 Description
	5.2 Function Block Local Variables
	5.3 Function Block Operations
	5.4 Example of Using CM_Event and Event_Manager FBs

	6 Function Blocks: Event_Summation, Event_SummationBegin, Event_SummationEnd
	6.1 Description
	6.2 Function Block Local Variables
	6.2.1. Even_Summation FB Variables
	6.2.2. Even_SummationBegin FB Variables
	6.2.3. Even_SummationEnd FB Variables

	6.3 Event Summation Related Structured Data Type
	6.3.1. SDT_EventSummation Structured Data Type

	6.4 Function Block Operations

	7 Function Block: Event_Sort
	7.1 Description
	7.2 Function Block Local Variables
	7.3 Function Block Operations

	Mitsubishi PackML Implementation Users Guide - Part 6 Template Project R3 V5
	1 Introduction
	2 PackML Template System Hardware Architecture
	3 Mitsubishi PackML Template Project Structure Overview
	4 Mitsubishi PackML Template Project
	4.1 Initial Program Type
	4.2 Scan Program Type
	4.3 Other Program Types

	5 PackML Global Labels
	5.1 PackML_FB Group
	5.1.1. PackMLFB Structured Data Type

	5.2 OEM_Template_PackML_Labels
	5.2.1. PackML_Module_Cmd Structured Data Type

	5.3 OEM_Template_PackML_GOT_Keys
	5.4 OEM_Template_Event_Labels
	5.5 OEM_Template_Event_GOT_Keys

	6 PackML Template Project Program Organization Units
	6.1 Initialization POU
	6.1.1. Equipment Module PackML Initialization POUs
	6.1.2. Unit Machine PackML Initialization POUs

	6.2 Unit Machine Level POUs
	6.2.1. UM_Main
	6.2.2. PackML_Main
	6.2.3. UM_LineComm
	6.2.4. UM_EventControl

	6.3 Equipment Module Level POUs
	6.3.1. EMxx_Main
	6.3.2. EMxx_CMnn_Routine
	6.3.3. EMxx_EventControl
	6.3.4. EMxx_PackML_Cmd_Sum

	6.4 POU Scan Order

	7 PLC CPU Parameters and Settings
	7.1 PLC System Parameters
	7.2 PLC File Parameters
	7.3 Device Settings
	7.4 I/O Assignments
	7.5 Multiple CPU Setting
	7.6 Built In Ethernet Port Setting
	7.7 Device Label Automatic Assignments

	8 Program Memory Space
	8.1 Downloading Symbolic Information File to the PLC Standard ROM location to save program memory space

	9 This section documents the steps that an OEM will take to add the POU’s Example of Adding an Equipment Module to the Template System
	9.1 Adding EM02_Init POU
	9.2 Adding EM02 Program File
	9.3 Modifying PackML_Main Routine

	10 Example of Adding a Control Module to the Template System
	11 Issuing PackML Commands in a Machine Program
	11.1 Example 1: Transition from Producing Mode Starting State to Execute State
	11.2 Example 2: Transition from Manual Mode Execute State to Stopping State

	Mitsuibishi PackML Implementation Users Guide - Part 7 GOT R3 V5
	1 Introduction
	2 PackML Template System Architecture
	3 GOT Communication Channel Configuration
	4 Sample Screens
	4.1 PackML Mode Screens
	4.1.1. Producing Mode Screen
	4.1.2. Maintenance Mode Screen
	4.1.3. Manual Mode Screen
	4.1.4. User Defined Mode 1 / User Defined Mode 2 Screen

	4.2 Event Test Screen

	Mitsuibishi PackML Implementation Users Guide - Part 8 Minimum Set Template R3 V5
	1 Introduction
	2 Minimum PackML Template System Architecture
	3 Minimum PackTags
	4 Minimum States
	5 Template PLC Program
	5.1 Configuring States to be used

	6 GOT Sample Screens
	6.1 PackML Mode Screens

