

FACTORY AUTOMATION

INVERTER FR-A800 Plus

Optimum functions for cranes added [Ethernet communication model added to the line-up]

- Reduction in tact time
- Load slippage prevention
- Dedicated monitoring functions
- Wide range of applications
- Easier maintenance
- Pursuit of leading drive performance
- System support

GLOBAL IMPACT OF MITSUBISHI ELECTRIC

Through Mitsubishi Electric's vision, "Changes for the Better" are possible for a brighter future.

Changes for the Better

We bring together the best minds to create the best technologies. At Mitsubishi Electric, we understand that technology is the driving force of change in our lives. By bringing greater comfort to daily life, maximizing the efficiency of businesses and keeping things running across society, we integrate technology and innovation to bring changes for the better. Mitsubishi Electric is involved in many areas including the following

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

Features	6
Standard specifications	13
Outline dimensions	17
Crane function parameters	19
Warranty	25
Support	26

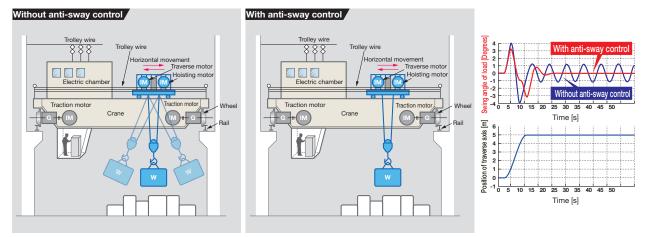
Pursuing optimum functions to

A new lineup of dedicated inverters for specialized fields are born! Plus! The optimum functions for each dedicated field are added to the already high

ABDD Plus

meet our customers' needs

performance and high functionality FR-A800 series inverter.



Suited for various cranes to achieve fast, robust, and smooth operations

Plus! Reduction in tact time

Anti-sway control

By using Mitsubishi Electric's original anti-sway control technology, the swinging of an object moved by a crane is suppressed at the time of stopping, even without operator's input adjustment. This control cuts down the tact time and facilitates efficient operation.

Load torque high-speed frequency control (mode 2)

When there is a light-load (when light loads are moved up or down by a crane), the speed will automatically be increased. This reduces the tact time and facilitates efficient operation. The possible operation speed is set automatically according to the load. After starting the inverter, the inverter runs at high speed with a light load.

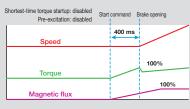
Built-in brake transistor

22K inverters or lower in the 200 V class and 55K inverters or lower in the 400 V class have a built-in brake transistor.

Connecting a brake resistor^{*1} can shorten the deceleration time; no brake unit or power regeneration converter is required.

*1 The brake resistor must have a sufficient capacity to consume the regenerative power.

Shortest-time torque startup function


The time from the start command to when the brake opens is shortened. This will contributes to reduction in tact time.

• Shortest-time torque startup function

The optimum distribution of the excitation current and torque current enables rapid startup of the torque.

Magnetic flux command during pre-excitation

Decreasing the pre-excitation current during a motor stop reduces power consumption during standby, and enables rapid startup of the torque.

Shortest-time torque startup: enabled Start command Brake opening

Speed	300 ms
Torque	100%
Magnetic flux	100%

Shortest-time torque startup: enabled Pre-excitation: enabled (35%) Start command Brake opening

	n. chabica (0070)		
Excitatio	n startup		190 ms
Speed		\leftrightarrow	
Torque			100%
Magnetic flux	35%		100%

Example of FR-A820-90K-1-60CRN and SF-THY (90 kW)

Plus! Load slippage prevention

Brake sequence function

The highly scalable brake sequence function enables the output of a brake opening signal for the optimum brake operation calculated from the load torque or the speed.

The function enables setting of the brake opening level individually for forward rotation and reverse rotation.

Low-speed range speed control P gain

When an inverter is connected to a lift, the inverter has a load immediately after the lift brake is released. Adjusting the speed control P gain in the low-speed range improves the response at low speed, and shortens the time from startup to brake opening.

Falling detection

Slippage during the start of a lift can be checked. When the commanded direction

differs from the actual motor rotation direction, the falling detection signal is output. 1

Plus! Dedicated monitoring functions

Overload detection function

By outputting an overload detection signal when too much load (overload) is applied to a crane, this information can be transmitted to the superordinate controller.

During constant speed operation, when the motor torque is equal to or higher than the torque setting for the time setting or longer, the overload detection signal is turned ON.

Start count monitor

The inverter starting times can be counted.

Confirming the starting times can be used to determinate the timing of the maintenance, or can be used as a reference for system inspection or parts replacement.

Start count monitor

Wide range of applications

Compliance with ship classification standards

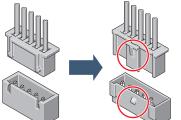
Using the recommended noise filter in combination with the inverter supports compliance with various countries ship classifications, such as NK, LR, DNV GL, ABS, BV, CCS, and KR. The FR-A800-CRN can be used for electric deck cranes on ship.

Easier maintenance

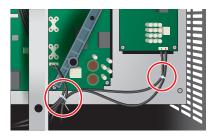
Plus! Enhanced vibration resistance

A strong vibration may occur in some operating conditions, for example, during the crane traveling. Inverters with enhanced vibration resistance are available. They have components fixed to the circuit board with adhesive and wires that are tied in place with cable ties.

Enhanced adhesion of the circuit board components


Components on the circuit board are fixed with adhesive for enhanced vibration resistance.

Enhanced countermeasure of connector coming-off prevention


Instead of a simple locking mechanism, a full locking mechanism is adopted for cable connectors.

<Simple locking mechanism> <Full locking mechanism>

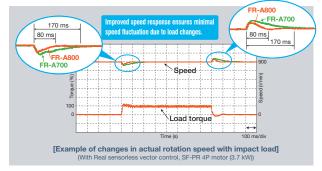
Adoption of cable ties

Cables are bound and fixed to avoid contact with conductive components inside the inverter in case of strong vibrations.

Improved environmental resistance

Using the inverter in a dusty environment may cause faults such as a short circuit. The inverter with circuit board coating (conforming to IEC60721-3-3:1994 3C2/3S2) ensures reliability even in poor environments. Furthermore, an inverter with

plated conductors is also available.


Pursuit of leading drive performance

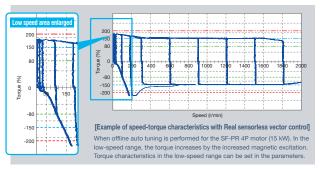
High response

The improved speed response ensures a minimal speed fluctuation to maintain a constant speed when the load fluctuates.

• Speed response

Real sensorless vector control 50 Hz^{*1} (A700: 20 Hz) Vector control^{*2} 130 Hz^{*3} (A700: 50 Hz)

*1 At 3.7 kW with no load Differs depending on the load conditions and motor capacity. *2 The vector control is available when a vector control compatible option is installed. *3 The option (FR-A8AP, FR-A8AL, or FR-A8TP) is required.


High torque at low speed

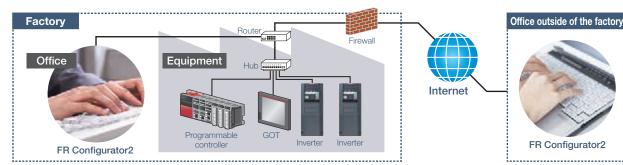
Our new inverter realizes smooth cargo handling work at low speed and high torque for the slow and stable movements required for heavy objects.

Measures against dust,

dirt, and corrosion

 Starting torque (at 0.3 Hz) Real sensorless vector control 200% (ND rating) Vector control^{*2} 200% (ND rating) (150% of initial setting for 5.5K or higher)

System support


Compatibility with various open networks

Using a controller, the inverter can be controlled and monitored via various types of network.

Ethernet communication FR-A800-E-CRN CC-Link IE Flield Basic

(1) CC-Link IE Field Network Basic supported

CC-Link IE Field Network Basic is supported, so the network can be created easily. The inverter's status can be monitored and the parameters can be set via Internet. (MODBUS/TCP is also supported.)

(2) Monitoring from a remote location

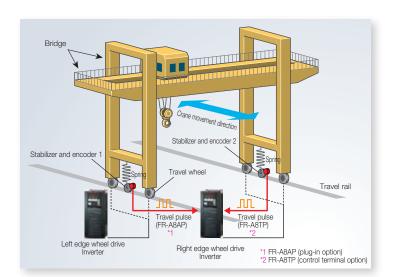
The FR-A800-E-CRN inverter can be connected to FR Configurator2 using a commercially-available industrial wireless LAN*1 access point.*2 Adjustments of inverter parameters, inverter monitoring (simultaneous monitoring of multiple axes possible) and inverter maintenance such as life diagnosis checks can be performed wirelessly.

*1 A wireless LAN suitable for the industrial use in severe environments or in environments requiring high reliability (redundancy).

*2 Under certain environments or installation conditions, Ethernet communication through wireless LAN is not as stable as communication through wired LAN. Before starting operation, always check the communication status. For applications requiring data transmission or update periodically or within a certain time period, a wired connection is recommended.

Other network communication

- CC-Link, SSCNETIII (/H), DeviceNet[™], PROFIBUS-DPV0 are supported using a compatible communication option. Other Ethernet-based communication such as the CC-Link IE Field Network communication and the FL remote communication can be also supported.
- A function block (FB) programming for CC-Link communication is available for the MELSEC-Q/L series to create the inverter control sequence programs easily. (The FB library (collection of FB elements) can be downloaded from the Mitsubishi Electric FA Global Website.)
- The standard model with an RS-485 interface (Mitsubishi inverter protocol, MODBUS® RTU protocol) enables communication with other devices without using a communication option.

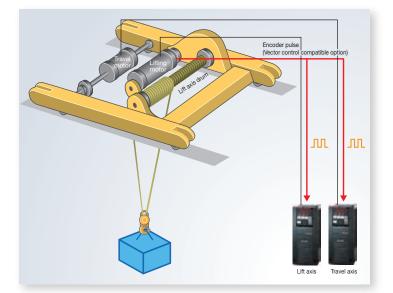

Control the machines as you desire

Inverter operation sequence customized for the machine

Inverter control such as inverter operations triggered by input signals, signal output based on inverter operation status, and monitor output can be freely customized based on the machine specifications. Control programs can be created in sequence ladders using the inverter setup software (FR Configurator2).

Application example 1: Position error correction

The traveled distance (total number of travel pulses) of each wheel is directly read from the encoder installed at the wheel. The pulses from the two wheels are then compared, and their speed is adjusted to synchronize the wheel positions. There is no need to use an external controller to offset speed, allowing high accuracy control.

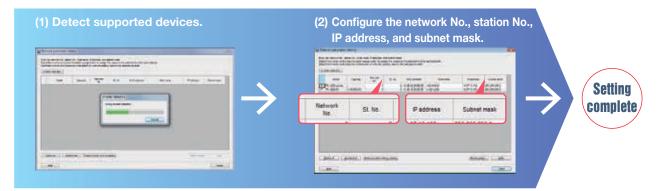


Application example 2: Wire rope length measurement

The travel axis reads the amount of lifting/lowering movement (encoder pulse) of the lift axis to calculate the wire rope length.

The wire rope length according to the operating condition can be applied to the anti-sway control.

The lifting/lowering speed can be slowed down when the rope length reaches a predetermined value to prevent the object from colliding into the lift axis drum, etc.



Delivering a comfortable inverter operating environment – FR Configurator2

Easy setup FR-A800-E-CRN

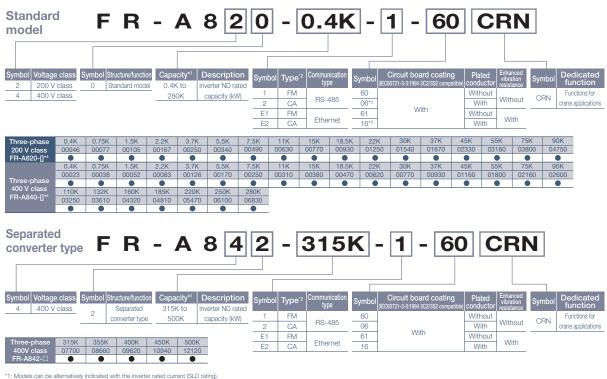
Detect the inverter and easily configure network settings using the inverter setup software FR Configurator2.

Easy-to-follow platform facilitates easy maintenance

• Fault history

Fault history and fault occurrence time can be displayed together. Faults can also be displayed while they are occurring and the inverter can be reset.

near that Antion that All Station with damp developed of the	- 69	1			
tall times				(Chapter)	Address the
Service Name	1 and Taxa 1	Ball Dat 1	and to be	STALL	Statut were here
Land COD Designating foreguesting of the	1.00%	6164	6.02	100	an-segar of gas
A. T. COLD, CHARGE BILLING ADALS AND AND AND THE REAL PROPERTY OF AND A DALE	1.1040	105	414		2010/01/10/01
3 E.022 Sumbaried Hit dating landscales to also	-0.00m	0.000	8.04	. 66	2010/24717184
E EVT under steps	3894	0.004	1.07	240	2010/0171718-0
4 EXVT prost-offset	100010	0.30a	8.897	444	2010/01/01/01/01
1 DOVT Invite stage	1,000	title.	100	1000	annungert ett eben
 EXVT meter-stage 	1.000	0.00	1.01	1.1	
1 ERI Watermarker	1 00mg 1 00mg	100	10	- 2	Severant state
1 MA Reserves And Andrewski Andrews Andrewski Andrewski A Andrewski Andrewski A	3 2040	-	and the second		and and if it is
1. EV. It descends anythin ECCOMPLANT for any first second or the end of the second back of the second or the end of the second back of the second second of the second second descend of the second second descend of the second second descend of the second second descend of the second second second second descend of the second second second second second descend of the second second second second second second descend of the second second second second second second descend of the second second descend of the second second second second second second second second second second descend second second second second second second second second second second descend second second descend second second second second second second second second second descend second second descend second se	i soniji vlati zame strat	100 1001 14741	2.2v	****	10011111 100000
1. CM. Strategenerative section: 1. CD. And the descent section of the 1. CD. And the section of the section of the section 1. CD. And the section of the section of the section 1. CD. And the section of the section of the section 1. CD. Section of the section of the section of the section of the 1. CD. Section of the section of the section of the section of the 1. CD. Section of the	i soniji vlati zame strat	100 1001 14741	2.2v	****	tei motoria
1. CAR 19 Approved in security. ECT 2-encourses on a long approximation range that is a nontrol path is written and a security or original path is a security in random and the security of the second security and the Deal of the second security and the Deal of the second security.	i soniji vlati zame strat	100 1001 14741	2.2v	****	10011111 100000


Life diagnosis check

Inverter life information data can be displayed. A warning icon is shown in the part life alarm field of the parts recommended for replacement.

Diagnosis results can be exported to a file with the Diagnosis data output function.

Alam			different serverent
	New	EN-T	Penalte
	out case for of reality and P15 comparison	1000	The last measured value of many creat segments the is proven ADA or host is a qualifier for replacement
-	and same		196 a lais a a publica la reglacement
Anatolia and	ourset had cacut of models and PIS compatible	(100)	IN at loss a a publica for replacement.
Cooling	Sec.	-	Life also a displayed other for tar good domains from the for series law real.
. but	an areas for a		We also a standard once for far same formand from the
-	tin meginine line	20115	The completive area plated to be also the market depend in shows

*2: Specification differs depending on the type shown in the following table.

*3: Available for the 5.5K or higher.

*4: For the 75K or higher inverter, or whenever a 75 kW or higher motor is used, always connect a DC reactor (FR-HEL), which is available as an option.

Time	Monitor output			Initial setting	
Туре	Monitor output	Built-in EMC filter	Control logic	Rated frequency	Pr.19 Base frequency voltage
FM	Terminal FM: pulse train output	OFF	Sink logic	60 Hz	9999
(terminal FM equipped model)	Terminal AM: analog voltage output (0 to ±10VDC)	On	Girnelogio	00112	(same as the power supply voltage)
CA	Terminal CA: analog current output (0 to 20mADC)	ON	Source logic	50 Hz	8888
(terminal CA equipped model)	Terminal AM: analog voltage output (0 to ±10VDC)	ON	Source logic	50112	(95% of the power supply voltage)

500K 12120

Inverter by rating

• 200 V class

	T OIG			1.0.0				115 /	
Inverte	r model	SLD (supe	rlight duty)	LD (lig	ht duty)	ND (normal du	ty, initial value)	HD (hea	vy duty)
	820-[]	Motor capacity (kW)* ⁵	Rated current (A)	Motor capacity (kW)*⁵	Rated current (A)	Motor capacity (kW)*⁵	Rated current (A)	Motor capacity (kW)*5	Rated current (A)
0.4K	00046	0.75	4.6	0.75	4.2	0.4	3	0.2	1.5
0.75K	00077	1.5	7.7	1.5	7	0.75	5	0.4	3
1.5K	00105	2.2	10.5	2.2	9.6	1.5	8	0.75	5
2.2K	00167	3.7	16.7	3.7	15.2	2.2	11	1.5	8
3.7K	00250	5.5	25	5.5	23	3.7	17.5	2.2	11
5.5K	00340	7.5	34	7.5	31	5.5	24	3.7	17.5
7.5K	00490	11	49	11	45	7.5	33	5.5	24
11K	00630	15	63	15	58	11	46	7.5	33
15K	00770	18.5	77	18.5	70.5	15	61	11	46
18.5K	00930	22	93	22	85	18.5	76	15	61
22K	01250	30	125	30	114	22	90	18.5	76
30K	01540	37	154	37	140	30	115	22	90
37K	01870	45	187	45	170	37	145	30	115
45K	02330	55	233	55	212	45	175	37	145
55K	03160	75	316	75	288	55	215	45	175
75K	03800	90/110	380	90	346	75	288	55	215
90K	04750	132	475	110	432	90	346	75	288

Overload current rating

SLD	110% 60 s, 120% 3 s (inverse-time characteristics) at surrounding air temperature of 40°C
LD	120% 60 s, 150% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
ND	150% 60 s, 200% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C
HD	200% 60 s, 250% 3 s (inverse-time characteristics) at surrounding air temperature of 50°C

*5 Indicates the maximum capacity applicable with the Mitsubishi Electric 4-pole standard motor.

400 V class nverter model SLD (su LD (light duty) HD (h ND (n ght duty) FR-A840-II/ Motor ca Motor capacity (**kW)***5 Rated current lotor capad (kW)*5 Rated cur FR-A842-[] (kW)*5 (kW)*5 (A) (A) (A) (A) 0.4K 0.7 0.4 0.8 2.1 0.75K 1.5 3.8 1.5 3.5 0.75 0.4 1.5 4.8 1.5K 5.2 2.2K 8.3 7.6 3.7K 5.5K 3.7 3.7 7.5K 18.5K 18.5 22K 18.5 30K 75/90 55K 75K 110K 160K 185K 220K 280K 400K

Standard specifications

• Rating (Standard model)

200 V class

	Mo	del FR-A	220 11	00046	00077	00105	00167	00250	00340	00490	00630	00770	00930	01250	01540	01870	02330	03160	03800	04750
	WO		520-[]	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K	75K	90K
Δ.	pplicable	SLD		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90/110	
	otor	LD		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Са	apacity W) *1	ND (initial set	tting)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
(, .	HD		0.2 *2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75
		SLD		1.8	2.9	4	6.4	10	13	19	24	29	35	48	59	71	89	120	145	181
	Rated	LD		1.6	2.7	3.7	5.8	8.8	12	17	22	27	32	43	53	65	81	110	132	165
	capacity (kVA) *3	ND (initial set	tting)	1.1	1.9	3	4.2	6.7	9.1	13	18	23	29	34	44	55	67	82	110	132
		HD		0.6	1.1	1.9	3	4.2	6.7	9.1	13	18	23	29	34	44	55	67	82	110
		SLD		4.6	7.7	10.5	16.7	25	34	49	63	77	93	125	154	187	233	316	380	475
	Rated	LD		4.2	7	9.6	15.2	23	31	45	58	70.5	85	114	140	170	212	288	346	432
	current (A)	ND (initial set	tting)	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288	346
		HD		1.5	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288
ŭ		SLD		110%	60 s, 1	20% 3	s (inve	rse-tim	e char	acterist	tics) at	surrou	nding a	air temp	beratur	e of 40	°C			
Output	Overload	LD		120%	60 s, 1	50% 3	s (inve	erse-tim	ne char	acteris	tics) at	surrou	inding a	air tem	peratur	e of 50	°C			
0	current rating *4	ND (initial set	tting)	150%	60 s, 2	00% 3	s (inve	erse-tim	ne char	acteris	tics) at	surrou	inding a	air tem	peratur	e of 50	0°C			
		HD		200%	60 s, 2	50% 3	s (inve	erse-tim	ne char	acteris	tics) at	surrou	inding a	air tem	peratur	e of 50	°C			
	Rated vol	Itage *5		Three	-phase	200 to	240 V													
		Built-in b	rake transistor	Built-ir	ו										FR-BL	J2 (opt	ion)			
	Regenerative		n brake torque	150% 3%ED	torque	1	100% torque 3%ED		100% torque 2%ED		20% te	orque/o	continu	ous			<u> </u>		10% to contin	
	braking	FR-ABF		150%	,	1000/				*6	4000/									
		used)	he option is	torque 10%E		100%	torque	/10%E	D		100%	torque	/6%ED		_		_		_	
		e/frequency		Three	-phase	200 to	240 V,	50 Hz	/60 Hz											
			age fluctuation		264 V,	50 Hz	/60 Hz													
	Permissib	ole freque	ncy fluctuation	±5%																
			SLD	5.3	8.9	13.2	19.7	31.3	45.1	62.8	80.6	96.7	115	151	185	221	269		-	
			LD	5	8.3	12.2	18.3	28.5	41.6	58.2	74.8	90.9	106	139	178	207	255	_	—	
	Rated	DC reactor	ND (initial setting)	3.9	6.3	10.6	14.1	22.6	33.4	44.2	60.9	80	96.3	113	150	181	216	266	_	_
	input		HD	2.3	3.9	6.3	10.6	14.1	22.6	33.4	44.2	60.9	80	96.3	113	150	181	216	-	-
>	current		SLD	4.6	7.7	10.5	16.7	25	34	49	63	77	93	125	154	187	233	316	380	475
do	(A) *8	With DC	LD	4.2	7	9.6	15.2	23	31	45	58	70.5	85	114	140	170	212	288	346	432
Power supply	-	reactor	ND (initial setting)	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288	346
No No			HD	1.5	3	5	8	11	17.5	24	33	46	61	76	90	115	145	175	215	288
۵.			SLD	2	3.4	5	7.5	12	17	24	31	37	44	58	70	84	103	—	—	—
		Without	LD	1.9	3.2	4.7	7	11	16	22	29	35	41	53	68	79	97	—	—	—
	Power	DC	ND (initial setting)	1.5	2.4	4	5.4	8.6	13	17	23	30	37	43	57	69	82	101	_	_
	supply		HD	0.9	1.5	2.4	4	5.4	8.6	13	17	23	30	37	43	57	69	82	—	—
	capacity		SLD	1.8	2.9	4	6.4	10	13	19	24	29	35	48	59	71	89	120	145	181
	(kVA) *9		LD	1.6	2.7	3.7	5.8	8.8	12	17	22	27	32	43	53	65	81	110	132	165
		With DC reactor	ND (initial setting)	1.1	1.9	3	4.2	6.7	9.1	13	18	23	29	34	44	55	67	82	110	132
			HD	0.6	1.1	1.9	3	4.2	6.7	9.1	13	18	23	29	34	44	55	67	82	110
	rotective st EC 60529)				sed typ											type (II			122	1
`	ooling syst			Self-co	ooling	Force	d air co	oling							·					
A	pprox. mas	ss (kg)			2.2	3.3	3.3	3.3	6.7	6.7	8.3	15	15	15	22	42	42	54	74	74
		,								annlics							1			

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor. 0.2 kW motors can be used only under V/F control. *1

*2

*3 The rated output capacity indicated assumes that the output voltage is 220 V.

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. *4

*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$. With the built-in brake resistor

*6 *7 ND rating reference value

The rated input current is the value when at the rated output current. The impedance at the power supply side (including those of the input reactor *8

*8 The rated input currents the value when at the rated output current. The impedance at the power supply side (including those of the input react and cables) affects the rated input current.
 *9 The power supply capacity is the value when at the rated output current. The impedance at the power supply side (including those of the input reactor and cables) affects the power supply capacity.
 *10 FR-DU08: IP40 (except for the PU connector)

2

400 V class

IVIC	odel	FR-A84	10-[1																	02600							
Mic	Juci	I I I - AU-	10-U	0.4K	0.75K	1.5K	2.2K	3.7K	5.5K	7.5K	11K	15K	18.5K	22K	30K	37K	45K	55K	75K	90K	110K	132K	160K	185K	220K	250K	280
pplicat	ble	SLD		0.75		2.2		5.5	7.5	11	15		22	30	37	45	55	75/ 90	110	132	160	185	220	250		315	355
notor		LD		0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	185	220	250	280	315
apacity kW) *1		ND (initial s	setting)	0.4	0.75				5.5	7.5	11	15	18.5			37	45	55			110	132	160	185		250	280
		HD			0.4	0.75		2.2	3.7	5.5	7.5	11	15		22	30	37	45	55	75	90	110	132	160		220	250
	+	SLD		1.8	2.9	4	6.3	10	13	19	24	29	36	47	59	71	88	137	165	198	248	275	329	367		465	52
Rate		LD		1.6	2.7	3.7	5.8	8.8	12	18	22	27	33	43	53	65	81	110	137	165	198	248	275	329	367	417	46
capa (kVA)) *3	ND (initial s	setting)	1.1	1.9	3	4.6	6.9	9.1	13	18	24	29	34	43	54	66	84	110	137	165	198	248	275	329	367	41
		HD		0.6	1.1	1.9	3		6.9	9.1	13	18	24	29	34	43	54	66	84	110	137	165	198	248	275	329	36
	+	SLD		2.3	3.8	5.2	8.3	12.6	17	25	31	38	47	62		93	116	180		260	325	361	432	481		610	68
Rate	1	LD		2.1	3.5	4.8	7.6	11.5	16	23	29	35	43	57	70	85	106	144	180	216	260	325	361	432	481	547	61
curre (A)		ND (initial s	setting)	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260	325	361	432	481	54
	Î	HD		8.0	1.5	2.5	4	6	9	12	17	23	31	38	44	57	71	86	110	144	180	216	260	325	361	432	48
5		SLD		110%	60 %	s, 120)% 3	s (inv	erse-	time	chara	acteri	stics)	at su	irrour	nding	air te	mpe	ature	e of 40	С°С						
over	loa	LD		120%	60 %	s, 15(0% 3	s (inv	/erse	-time	chara	acteri	stics)) at si	Irrour	nding	air te	empe	rature	e of 50	0°C						
d curi ratino		ND (initial s	settina)	150%	60 %	s, 200	0% 3	s (inv	/erse	-time	chara	acteri	stics)) at si	Irrour	nding	air te	empe	rature	e of 5	0°C						
		HD	0/	200%	60 %	s, 250	0% 3	s (inv	/erse	-time	chara	acteri	stics)) at si	Irrour	nding	air te	empe	rature	e of 5	0°C						
Rate	d vol	tage *5		Thre	e-pha	ase 3	80 to	500	V				,														
		Built-in transist		Built															FR-E	3U2 (a	optior	n)					
Regene	ł		um brake	100%	% tor	que/2	%ED	*6			20%	tora		ntinuo					10%	torqu		ntinua	2016				
braking		torque		1007		fue/2		*0			20 /0	ισιγι	10/00	minut	Ju3				10 /0	loiqu			503				
0.0g	,	FR-AE						_			100%	6 toro	ue/														
		(when	the is used)	100%	% tore	que/1	0%EI	2			6%E		1		-*12				—	_	—	—	—	_	—	—	-
Rate	d inn		is useu)																								
				Thre	e-pha	ase 3	80 to	500 \	/ 50	$H_{7}/60$	0 Hz	*11															
AC V	olitad				• p			000	•, 00	112/01	· · · -																
AC v					•					112/01		- 11															
	nissib	le AC v			•	0 V, 5				11250																	
Perm fluctu Perm	nissib uatior nissib	ole AC v n ole frequ	oltage		to 55																						
Perm fluctu	nissib uatior nissib	ole AC v n ole frequ	voltage	323 t ±5%	to 55	0 V, 5	0 Hz	/60 H	Z				59 4	76.0	07.6	115	141										
Perm fluctu Perm	nissib uatior nissib	ole AC v n ole frequ	oltage uency SLD	323 1 ±5% 3.2	to 55	0 V, 5 7.8	0 Hz/	/60 H 16.4	z 22.5	31.7	40.3	48.2	58.4	76.8	97.6	115	141										
Perm fluctu Perm	nissib uatior nissib uatior	vie AC v n vie frequ n Without	oltage uency SLD LD	323 t ±5%	to 55	0 V, 5	0 Hz	/60 H	Z			48.2	58.4 53.9		97.6 89.7	115 106	141 130							-			
Perm fluctu Perm fluctu	nissib Jatior nissib Jatior	ole AC v n ole frequ n	SLD LD ND (initial	323 1 ±5% 3.2 3	5.4 4.9	0 V, 5 7.8	0 Hz/	/60 H 16.4 15.1	z 22.5 22.3	31.7 31	40.3 38.2	48.2 44.9		75.1	89.7			 134									
Perm fluctu Perm fluctu Rateo	nissib uatior nissib uatior d	vie AC v n vie frequ n Without DC	SLD LD ND (initial setting)	323 t ±5% 3.2 3 2.3	5.4 4.9 3.7	0 V, 5 7.8 7.3 6.2	10.9 10.1 8.3	/60 H 16.4 15.1 12.3	z 22.5 22.3 17.4	31.7 31 22.5	40.3 38.2 31	48.2 44.9 40.3	53.9 48.2	75.1 56.5	89.7 75.1	106 91	130 108										
Perm fluctu Perm fluctu Rated input curre	nissib Jatior nissib Jatior	vie AC v n vie frequ n Without DC	SLD LD ND (initial setting)	323 1 ±5% 3.2 3 2.3	5.4 4.9 3.7 2.3	0 V, 5 7.8 7.3 6.2 3.7	10.9 10.1 8.3 6.2	/60 H 16.4 15.1 12.3 8.3	z 22.5 22.3 17.4 12.3	31.7 31 22.5 17.4	40.3 38.2 31 22.5	48.2 44.9 40.3 31	53.9 48.2 40.3	75.1 56.5 48.2	89.7 75.1 56.5	106 91 75.1	130 108 91	108	 216	 	 	— — — 361	— — — 432	 481	— — — 547	 610	
Perm fluctu Perm fluctu Rated input curre	nissib uatior nissib uatior d c ent	Without DC reactor	SLD LD ND (initial setting)	323 t ±5% 3.2 3 2.3	5.4 4.9 3.7	0 V, 5 7.8 7.3 6.2	10.9 10.1 8.3	/60 H 16.4 15.1 12.3	z 22.5 22.3 17.4	31.7 31 22.5	40.3 38.2 31	48.2 44.9 40.3	53.9 48.2	75.1 56.5	89.7 75.1 56.5 77	106 91	130 108		— — — 216 180	 260 216		— — — 361 325		 481 432		— — 610 547	— — 68 61
Perm fluctu Perm fluctu Rated input curre	nissib uatior nissib uatior d ent 8	Without Without DC With	SLD LD ND (initial setting) HD SLD	323 1 ±5% 3.2 3 2.3 1.4 2.3	5.4 4.9 3.7 2.3 3.8	7.8 7.3 6.2 3.7 5.2	10.9 10.1 8.3 6.2 8.3	/60 H 16.4 15.1 12.3 8.3 12.6	z 22.5 22.3 17.4 12.3 17	31.7 31 22.5 17.4 25	40.3 38.2 31 22.5 31	48.2 44.9 40.3 31 38	53.9 48.2 40.3 47	75.1 56.5 48.2 62	89.7 75.1 56.5 77	106 91 75.1 93	130 108 91 116	108 180									
Perm fluctu Perm fluctu Rated input curre	d ent	Without DC reactor	SLD LD ND (initial setting) HD SLD LD	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1	5.4 4.9 3.7 2.3 3.8	7.8 7.3 6.2 3.7 5.2	10.9 10.1 8.3 6.2 8.3 7.6	/60 H 16.4 15.1 12.3 8.3 12.6	z 22.5 22.3 17.4 12.3 17	31.7 31 22.5 17.4 25	40.3 38.2 31 22.5 31 29	48.2 44.9 40.3 31 38	53.9 48.2 40.3 47	75.1 56.5 48.2 62	89.7 75.1 56.5 77	106 91 75.1 93	130 108 91 116	108 180		216					481		61
Perm fluctu Perm fluctu Rated input curre	d ent	Without Without DC reactor With DC	oltage Jency LD ND (initial setting) HD SLD LD ND (initial	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1	5.4 4.9 3.7 2.3 3.8 3.5	7.8 7.3 6.2 3.7 5.2 4.8	10.9 10.1 8.3 6.2 8.3 7.6	/60 H 16.4 15.1 12.3 8.3 12.6 11.5	z 22.5 22.3 17.4 12.3 17 16	31.7 31 22.5 17.4 25 23	40.3 38.2 31 22.5 31 29 23	48.2 44.9 40.3 31 38 35	53.9 48.2 40.3 47 43	75.1 56.5 48.2 62 57	89.7 75.1 56.5 77 70	106 91 75.1 93 85	130 108 91 116 106	108 180 144	180	216	260	325	361	432	481	547	
Perm fluctu Perm fluctu Rated input curre	d ent	Without Without DC reactor With DC	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting)	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5	5.4 4.9 3.7 2.3 3.8 3.5 2.5	7.8 7.3 6.2 3.7 5.2 4.8 4	10.9 10.1 8.3 6.2 8.3 7.6 6	(60 H 16.4 15.1 12.3 8.3 12.6 11.5 9	z 22.5 22.3 17.4 12.3 17 16 12	31.7 31 22.5 17.4 25 23 17	40.3 38.2 31 22.5 31 29 23 17	48.2 44.9 40.3 31 38 35 31	53.9 48.2 40.3 47 43 38	75.1 56.5 48.2 62 57 44	89.7 75.1 56.5 77 70 57 44	106 91 75.1 93 85 71	130 108 91 116 106 86	108 180 144 110	180 144	216 180	260 216	325 260	361 325	432 361	481 432	547 481	61 54
Perm fluctu Perm fluctu Rated input curre	nissib Jation nissib Jation d : ent 8	Without DC reactor With DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5 0.8	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5	0 Hz/ 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3	(60 H (16.4) (15.1) (12.3) (12.3) (12.6) (11.5) (12.6) (12	z 22.5 22.3 17.4 12.3 17 16 12 9 17	31.7 31 22.5 17.4 25 23 17 12 24	40.3 38.2 31 22.5 31 29 23 17 31	48.2 44.9 40.3 31 33 35 31 23 37	53.9 48.2 40.3 47 43 38 31	75.1 56.5 48.2 62 57 44 38 59	89.7 75.1 56.5 77 70 57 44 74	106 91 75.1 93 85 71 57	130 108 91 116 106 86 71	108 180 144 110	180 144	216 180	260 216	325 260	361 325	432 361	481 432	547 481	61 54
Perm fluctu Perm fluctu Rated input curre	nissibi Jatior nissibi Jatior d : ent 8	Without Without DC reactor With DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD HD SLD HD SLD	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5 0.8 2.5	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9	0 Hz/ 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3	(60 H (16.4) (15.1) (12.3) (12.3) (12.6) (11.5) (12.6) (12	z 22.5 22.3 17.4 12.3 17 16 12 9 17	31.7 31 22.5 17.4 25 23 17 12 24	40.3 38.2 31 22.5 31 29 23 17 31	48.2 44.9 40.3 31 33 35 31 23 37	53.9 48.2 40.3 47 43 38 31 44	75.1 56.5 48.2 62 57 44 38 59	89.7 75.1 56.5 77 70 57 44 74	106 91 75.1 93 85 71 57 88	130 108 91 116 106 86 71 107	108 180 144 110	180 144	216 180	260 216	325 260	361 325	432 361	481 432	547 481	61 54
Rated input (A) *8	d d sent 8	Without DC reactor With DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial SLD LD ND (initial SLD LD ND (initial	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5 0.8 2.5 2.3	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1 3.7	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9	10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7	(60 H (16.4) (15.1) (12.3) (12.3) (12.6) (11.5) (12.6) (12	z 22.5 22.3 17.4 12.3 17 16 12 9 17	31.7 31 22.5 17.4 25 23 17 12 24	40.3 38.2 31 22.5 31 29 23 17 31 29	48.2 44.9 40.3 31 38 35 31 23 37 34	53.9 48.2 40.3 47 43 38 31 44	75.1 56.5 48.2 62 57 44 38 59	89.7 75.1 56.5 77 70 57 44 74 68	106 91 75.1 93 85 71 57 88	130 108 91 116 106 86 71 107	108 180 144 110	180 144	216 180	260 216	325 260	361 325	432 361	481 432	547 481	61 54
Perm fluctu Perm fluctu Ratee curre (A) *8	nissibi uation nissibi uation ent 8	Without DC reactor Without DC reactor With DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND SLD LD ND	323 1 ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5 0.8 2.5 2.3	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1 3.7	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5	0 Hz/ 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3	(60 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 12 9.4	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17	31.7 31 22.5 17.4 25 23 17 12 24 24	40.3 38.2 31 22.5 31 29 23 17 31 29 22 29 24	48.2 44.9 40.3 31 38 35 31 23 37 34	53.9 48.2 40.3 47 43 38 31 44 41	75.1 56.5 48.2 62 57 44 38 59 57	89.7 75.1 56.5 77 70 57 44 74 68 57	106 91 75.1 93 85 71 57 88 81	130 108 91 116 106 86 71 107 99	108 180 144 110 86 —	180 144	216 180	260 216	325 260	361 325	432 361	481 432	547 481	61 54
Perm fluctu Perm fluctu input curre curre suppl capa	nissibi uation nissib uation d ent 8 ent 8 er ly city	Without DC reactor Without DC reactor With DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD SLD SLD SLD SLD SLD SLD SL	323 t ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5 0.8 2.5 2.3 1.7 1.1	5.4 4.9 3.7 2.3 3.8 3.5 2.5 4.1 3.7 2.8	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7	0 Hz/ 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3	(60 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 12 9.4	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 17	31.7 31 22.5 17.4 25 23 17 12 24 24 17	40.3 38.2 31 22.5 31 29 23 17 31 29 24 24	48.2 44.9 40.3 31 38 35 31 23 37 34 31	53.9 48.2 40.3 47 43 38 31 44 41 37	75.1 56.5 48.2 62 57 44 38 59 57 43	89.7 75.1 56.5 77 70 57 44 74 68 57	106 91 75.1 93 85 71 57 88 81 69	130 108 91 116 106 86 71 107 99 83	108 180 144 110 86 — 102	180 144	216 180 144 — —	260 216	325 260	361 325	432 361	481 432	547 481	61 54 48
Perm fluctu Perm fluctu Rated input curre curre	nissibi jation nissib jation d : ent 8 8 er ly city) *9	Without DC reactor Without DC reactor Without DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD ND (initial setting) HD	323 t ±5% 3.2 3 2.3 1.4 2.3 2.1 1.5 0.8 2.5 2.3 1.7 1.1	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1 3.7 2.8 1.7	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8	10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 4.7 6.3	(60 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 9.4 6.3	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 17 17 9.4	31.7 31 22.5 17.4 25 23 17 12 24 24 17 13	40.3 38.2 31 22.5 31 29 23 17 31 29 24 17 24	48.2 44.9 40.3 31 38 35 31 23 37 34 31 23 23 37 23 23 24	53.9 48.2 40.3 47 43 38 31 44 41 37 31	75.1 56.5 48.2 62 57 44 38 59 57 43 37	89.7 75.1 56.5 77 70 57 44 74 68 57 43 59	106 91 75.1 93 85 71 57 88 81 69 57	130 108 91 116 106 86 71 107 99 83 69	108 180 144 110 86 102 83	180 144 110 — —	216 180 144 — —	260 216 180 — —	325 260 216 — —	361 325 260 — —	432 361 325 — —	481 432 361 — — 417	547 481 432 — —	61 54 48
Perm fluctu Perm fluctu Ratee input (A) *8 Suppl capa	nissibi jation nissib jation ent ent 8 8 er ly city) *9	Without DC reactor Without DC reactor With DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) ND (initial setting) HD SLD LD ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND (initial setting) ND ND ND ND ND ND ND ND ND ND	323 + 323	5.4 4.9 3.7 2.3 3.8 3.5 2.5 4.1 3.7 2.8 1.7 2.8 1.7 2.9 2.7	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8 4 3.7	10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 5.8	 460 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 9.4 6.3 10 8.8 	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 13 9 9.4 13 12	31.7 31 22.5 17.4 25 23 17 12 24 24 17 13 19 18	40.3 38.2 31 22.5 31 29 23 17 31 29 24 17 24 22	48.2 44.9 40.3 31 33 35 31 32 37 34 31 22 29 27	53.9 48.2 40.3 47 43 38 31 44 41 37 31 36 33	75.1 56.5 62 57 44 38 59 57 43 37 47 43	89.7 75.1 56.5 77 70 57 44 74 68 57 43 59 53	106 91 75.1 93 85 71 57 88 81 69 57 71 65	130 108 91 116 106 86 71 107 99 83 69 88 81	108 180 144 110 86 	180 144 110 	216 180 144 — — 198 165	260 216 	325 260 216 — — 275 248	361 325 260 — — 329 275	432 361 325 — — 367 329	481 432 361 417 367	547 481 	61 54 48 52 46
Perm fluctu Perm fluctu Ratee input (A) *8 Suppl capa	hissible jation hissible jation ent 8 ent 8 er ly city) *9	Without DC reactor With DC reactor Without DC reactor Without DC reactor	oltage Jency LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD	323 + 323	5.4 4.9 3.7 2.3 3.8 3.5 2.5 4.1 3.7 2.8 1.7 2.8 1.7 2.9 2.7	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8 4	10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 5.8	 460 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 9.4 6.3 10 8.8 	z 22.5 22.3 17.4 12.3 17 16 12 9 9 17 17 17 13 9.4 13	31.7 31 22.5 17.4 25 23 17 12 24 24 17 13 19	40.3 38.2 31 22.5 31 29 23 27 29 24 17 24 22	48.2 44.9 40.3 31 38 35 31 23 37 34 31 24 29	53.9 48.2 40.3 47 43 38 31 44 41 37 31 36	75.1 56.5 48.2 62 57 44 38 59 57 43 37 43	89.7 75.1 56.5 77 70 57 44 74 68 57 43 59 53	106 91 75.1 93 85 71 57 88 81 69 57 71	130 108 91 116 106 86 71 107 99 83 69 88	108 180 144 110 86 	180 144 110 — — 165	216 180 144 — — 198	260 216 180 — — 248	325 260 216 — — 275 248	361 325 260 — — — 329	432 361 	481 432 361 417 367	547 481 432 — — 465	61 54 48 52 46
Perm fluctu Perm fluctu input curre curre suppl capa	hissible jation hissible jation ent 8 ent 8 er ly city) *9	Without DC reactor With DC reactor With DC reactor Without DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial SLD LD ND (initial SLD LD ND (initial SLD LD ND (initial SLD LD ND (initial SLD LD ND (initial SLD LD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD ND (initial SLD SLD SLD SLD SLD SLD SLD SLD	$\begin{array}{c} 323 \\ \pm 5\% \\ 3.2 \\ 3 \\ 2.3 \\ 2.3 \\ 2.3 \\ 2.1 \\ 1.5 \\ 0.8 \\ 2.5 \\ 2.3 \\ 1.7 \\ 1.1 \\ 1.8 \\ 1.6 \\ 1.1 \end{array}$	5.4 4.9 3.7 2.3 3.8 3.5 2.5 4.1 3.7 2.8 1.7 2.8 1.7 2.9 2.7	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8 4 3.7	0 Hz 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 4.7 6.3 5.8 4.6	16.4 15.1 12.3 12.6 11.5 9 6 6 12 12 12 9.4 6.3 10 8.8 6.9	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 17 13 9.4 13 12 9.1	31.7 31 22.5 17.4 25 23 17 12 24 24 17 13 19 18	40.3 38.2 31 22.5 31 29 23 17 29 24 24 22 18	48.2 44.9 40.3 31 33 35 31 32 37 34 31 22 29 27	53.9 48.2 40.3 47 43 38 31 44 41 37 31 36 33	75.1 56.5 62 57 44 38 59 57 43 37 47 43	89.7 75.1 56.5 77 70 57 44 74 68 57 43 43	106 91 75.1 93 85 71 57 88 81 69 57 71 65	130 108 91 116 106 86 71 107 99 83 69 88 81 66	108 180 144 110 86 	180 144 110 — — 165 137 110	216 180 144 — — 198 165	260 216 	325 260 216 — — 275 248	361 325 260 — — 329 275	432 361 325 — — 367 329	481 432 361 — — 417 367 329	547 481 	61 54 48 52 46 41
Perm fluctu Perm fluctu Rated input curre curre curre suppl capar	nissibi jation nissib jation ent ent 8 8 er ly city) *9	Without DC reactor With DC reactor With DC reactor Without DC reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD SLD SLD ND (initial setting) HD SLD SLD SLD SLD SLD SLD SLD SL	323 + 323	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1 3.7 2.8 1.7 2.8 1.7 2.9 2.7 1.9 1.1	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8 4 3.7 3 1.9	0 Hz 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 5.8 4.6 3	 460 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 12 9.4 6.3 10 8.8 6.9 4.6 	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 17 13 9.4 13 12 9.1	31.7 31 22.5 17.4 25 23 17 12 24 24 24 17 13 19 18 13	40.3 38.2 31 22.5 31 29 23 17 29 24 24 22 18	48.2 44.9 40.3 31 38 35 31 23 37 37 37 37 37 37 37 22 27 24	53.9 48.2 40.3 47 43 38 31 44 41 37 31 36 33 32 29	75.1 56.5 48.2 62 57 44 38 59 57 43 37 43 37 43 34	89.7 75.1 56.5 77 70 57 44 74 68 57 43 53 43 34	106 91 75.1 93 85 71 57 88 81 69 57 54 43	130 108 91 116 106 86 71 107 99 83 69 88 81 66 54	108 180 144 110 86 	180 144 110 — — 165 137 110	216 180 144 — — 198 165 137	260 216 	325 260 216 275 248 198	361 325 260 — — 329 275 248	432 361 	481 432 361 — — 417 367 329	547 481 	61 54
Perm fluctu Perm fluctu Rated input curre curre curre suppl capar	nissib jation nissib jation d ent ent 8 er ly city) *9 ve st	Vie AC v Vie frequent Vie frequent Without DC reactor With DC reactor Without DC reactor Without DC reactor Treactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD SLD SLD ND (initial setting) HD SLD SLD SLD SLD SLD SLD SLD SL	323 + 323	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1 3.7 2.8 1.7 2.8 1.7 2.9 2.7 1.9 1.1	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8 4 3.7 3	0 Hz 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 5.8 4.6 3	 460 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 12 9.4 6.3 10 8.8 6.9 4.6 	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 17 13 9.4 13 12 9.1	31.7 31 22.5 17.4 25 23 17 12 24 24 24 17 13 19 18 13	40.3 38.2 31 22.5 31 29 23 17 29 24 24 22 18	48.2 44.9 40.3 31 38 35 31 23 37 37 37 37 37 37 37 22 27 22 24	53.9 48.2 40.3 47 43 38 31 44 41 37 31 36 33 32 29	75.1 56.5 48.2 62 57 44 38 59 57 43 37 43 37 43 34	89.7 75.1 56.5 77 70 57 44 74 68 57 43 53 43 34	106 91 75.1 93 85 71 57 88 81 69 57 71 65 54	130 108 91 116 106 86 71 107 99 83 69 88 81 66 54	108 180 144 110 86 	180 144 110 — — 165 137 110	216 180 144 — — 198 165 137	260 216 	325 260 216 275 248 198	361 325 260 — — 329 275 248	432 361 	481 432 361 — — 417 367 329	547 481 	61 54 48 52 46 41
Perm fluctu Perm fluctu input curre curre suppl capa (kVA)	hissibi jation hissibi jation d t t t t t t t t t t t t t t t t t t	Viela AC v Viela freque Viela freque reactor Without DC reactor With DC reactor Without DC reactor Without DC reactor Treactor Without Treactor Without DC reactor Without Treactor Without NC reactor Reactor Reactor	oltage Jency SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD LD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD ND (initial setting) HD SLD SLD SLD ND (initial setting) HD SLD SLD SLD SLD SLD SLD SLD SL	323 1 ±5% 3.2 3 2.3 2.3 1.4 2.3 2.1 1.5 0.8 2.5 2.3 1.7 1.1 1.8 1.6 1.1 0.6 Enclu	5.4 4.9 3.7 2.3 3.8 3.5 2.5 1.5 4.1 3.7 2.8 1.7 2.8 1.7 2.9 2.7 1.9 1.1	7.8 7.3 6.2 3.7 5.2 4.8 4 2.5 5.9 5.5 4.7 2.8 4 3.7 3 1.9 type	0 Hz 10.9 10.1 8.3 6.2 8.3 7.6 6 4 8.3 7.7 6.3 5.8 4.6 3	(60 H 16.4 15.1 12.3 8.3 12.6 11.5 9 6 12 12 9.4 6.3 10 8.8 6.9 4.6)	z 22.5 22.3 17.4 12.3 17 16 12 9 17 17 17 13 9.4 13 12 9.1 6.9	31.7 31 22.5 17.4 25 23 17 12 24 24 17 13 19 18 13 9.1	40.3 38.2 31 22.5 31 29 23 17 29 24 24 22 18	48.2 44.9 40.3 31 38 35 31 23 37 37 37 37 37 37 37 22 27 22 24	53.9 48.2 40.3 47 43 38 31 44 41 37 31 36 33 32 29	75.1 56.5 48.2 62 57 44 38 59 57 43 37 43 37 43 34	89.7 75.1 56.5 77 70 57 44 74 68 57 43 53 43 34	106 91 75.1 93 85 71 57 88 81 69 57 54 43	130 108 91 116 106 86 71 107 99 83 69 88 81 66 54	108 180 144 110 86 	180 144 110 — — 165 137 110	216 180 144 — — 198 165 137	260 216 	325 260 216 275 248 198	361 325 260 — — 329 275 248	432 361 	481 432 361 — — 417 367 329	547 481 	61 54 48 52 46 41

0.2 kW motors can be used only under V/F control *3

The rated output capacity indicated assumes that the output voltage is 440 V. *4

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load.

*5 The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

*6 With the built-in brake resistor

*7

ND rating reference value The rated input current is the value when at the rated output current. The impedance at the power supply side (including those of the input reactor *8 and cables) affects the rated input current.

*9 The power supply capacity is the value when at the rated output current. The impedance at the power supply side (including those of the input reactor and cables) affects the power supply capacity.
*10 FR-DU08: IP40 (except for the PU connector)
*11 For the power voltage exceeding 480 V, set **Pr.977 Input voltage mode selection**.
*12 A commercial brake resistor can be used to improve the braking capability of the inverter built-in brake. Please contact your sales representative for details.

Rating (Separated converter type)

400 V class

Inverter

	Model FR-A84	0.0	07700	08660	09620	10940	12120
	Wodel FR-A04	-2-U	315K	355K	400K	450K	500K
		SLD	400	450	500	560	630
App	licable motor capacity	LD	355	400	450	500	560
(kW) *1	ND (initial setting)	315	355	400	450	500
		HD	280	315	355	400	450
		SLD	587	660	733	834	924
	Rated capacity (kVA) *2	LD	521	587	660	733	834
		ND (initial setting)	465	521	587	660	733
		HD	417	465	521	587	660
		SLD	770	866	962	1094	1212
	Rated current (A)	LD	683	770	866	962	1094
	Rated current (A)	ND (initial setting)	610	683	770	866	962
Output		HD	547	610	683	770	866
Out		SLD	110% 60 s, 120% 3	s (inverse-time chara	cteristics) at surroun	ding air temperature	of 40°C
	Overload current rating	LD	120% 60 s, 150% 3	s (inverse-time chara	acteristics) at surroun	ding air temperature	of 50°C
	*3	ND (initial setting)	150% 60 s, 200% 3	s (inverse-time chara	acteristics) at surroun	ding air temperature	of 50°C
		HD	200% 60 s, 250% 3	s (inverse-time chara	acteristics) at surroun	ding air temperature	of 50°C
	Rated voltage *4		Three-phase 380 to	500 V			
	Regenerative braking torque∗5 (when the converter unit (FR-CC2) is used)	Maximum brake torque	10% torque/continue	bus			
/er	Power supply voltage		430 to 780 VDC				
	Control power supply au	xiliary input	Single-phase 380 to	500 V, 50 Hz/60 Hz	*7		
ort	Permissible control power supply auxiliant Permissible control power s	er supply auxiliary	Frequency ±5%, vol	tage ±10%			
Prot	ective structure (IEC 605	29) *6	Open type (IP00)				
Coo	ling system		Forced air cooling				
App	rox. mass (kg)		163	163	243	243	243

The applicable motor capacity indicated is the maximum capacity applicable for use of the Mitsubishi Electric 4-pole standard motor. The rated output capacity indicated assumes that the output voltage is 440 V. *1

*2

*3 The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the inverter and motor to return to or below the temperatures under 100% load. The maximum output voltage does not exceed the power supply voltage. The maximum output voltage can be changed within the setting range. *4

However, the maximum point of the voltage waveform at the inverter output side is the power supply voltage multiplied by about $\sqrt{2}$.

ND rating reference value *5

*6 *7

FR-DU08: IP40 (except for the PU connector) For the power voltage exceeding 480 V, set **Pr.977 Input voltage mode selection**.

Converter unit (FR-CC2)

	Model FR-CC2-H[]	315K	355K	400K	450K	500K	560K	630K							
Ap	plicable motor capacity (kW)	315	355	400	450	500	560	630							
Output	Overload current rating *1	200% 60 s, 2	250% 3 s	·	·	150% 60 s, 200% 3 s	120% 60 s, 150% 3 s	110% 60 s, 120% 3 s							
õ	Rated voltage *2	430 to 780 V	430 to 780 VDC *4												
~	Rated input AC voltage/frequency	Three-phase	380 to 500 V,	50 Hz/60 Hz											
supply	Permissible AC voltage fluctuation	Three-phase	323 to 550 V,	50 Hz/60 Hz											
เร	Permissible frequency fluctuation	±5%	±5%												
Power	Rated input current (A)	610	683	770	866	962	1094	1212							
ř	Power supply capacity (kVA) *3	465	521	587	660	733	833	924							
٦r	otective structure (IEC 60529)	Open type (IP00)													
Сс	ooling system	Forced air co	oling												
DC	C reactor	Built-in													
Ap	prox. mass (kg)	210	213	282	285	288	293	294							

The % value of the overload current rating indicated is the ratio of the overload current to the inverter's rated output current. For repeated duty, allow time for the converter unit and the inverter to return to or below the temperatures under 100% load. *1

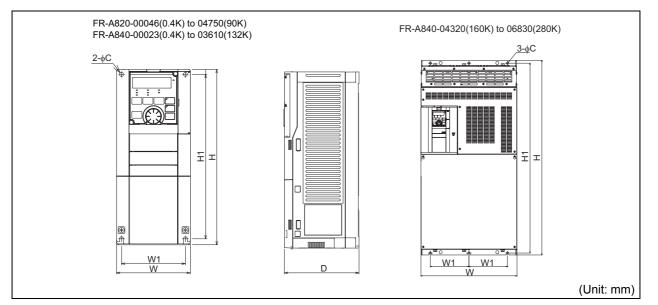
*2 The converter unit output voltage varies according to the input power supply voltage and the load. The maximum point of the voltage waveform at

the converter unit output side is approximately the power supply voltage multiplied by $\sqrt{2}$. The power supply capacity is the value when at the rated output current. The impedance at the power supply side (including those of the input *3

reactor and cables) affects the rated input current. The permissible voltage imbalance ratio is 3% or less. (Imbalance ratio = (highest voltage between lines - average voltage between three lines) / *4 average voltage between three lines \times 100)

Common specifications

	Control meth	od	Soft-PWM control, high carrier frequency PWM control (selectable among V/F control, Advanced magnetic flux vector control, Real sensorless vector control), Optimum excitation control, vector control*1, and PM sensorless vector control
	Output frequ	ency range	0.2 to 590 Hz (The upper frequency limit is 400 Hz under Advanced magnetic flux vector control, Real sensorless vector control, vector control-1, PM sensorless vector control.)
	Frequency setting resolution	Analog Input	0.015 Hz/60 Hz (0 to 10 V/12 bits for terminals 2 and 4) 0.03 Hz/60 Hz (0 to 5 V/11 bits or 0 to 20 mA/approx. 11 bits for terminals 2 and 4, 0 to ±10 V/12 bits for terminal 1) 0.06 Hz/60 Hz (0 to ±5 V/11 bits for terminal 1)
suo		Digital input	0.01 Hz
cati	Frequency accuracy	Analog Input Digital input	Within ±0.2% of the max. output frequency (25°C±10°C) Within 0.01% of the set output frequency
specifications	Voltage/frequ	iency	Base frequency can be set from 0 to 590 Hz. Constant-torque/variable-torque pattern or adjustable 5 points V/F can be selected.
	characteristic		SLD rating: 120% 0.3 Hz, LD rating: 150% 0.3 Hz, ND rating: 200%+2 0.3 Hz, HD rating: 250%+2 0.3 Hz
Control	Starting torq	ue	(under Real sensorless vector control or vector control*1)
ö	Torque boost		Manual torque boost
	Acceleration/ time setting	deceleration	0 to 3600 s (acceleration and deceleration can be set individually), linear or S-pattern acceleration/deceleration mode, backlash countermeasures acceleration/deceleration can be selected.
	DC injection (induction m		Operation frequency (0 to 120 Hz), operation time (0 to 10 s), operation voltage (0 to 30%) variable
	Stall preventi level	ion operation	Activation range of stall prevention operation (SLD rating: 0 to 120%, LD rating: 0 to 150%, ND rating: 0 to 220%, HD rating: 0 to 280%). Whether to use the stall prevention or not can be selected (V/F control, Advanced magnetic flux vector control).
	Torque limit l		Torque limit value can be set (0 to 400% variable). (Real sensorless vector control / vector control» / PM sensorless vector control) Terminals 2 and 4: 0 to 10 V, 0 to 5 V, 4 to 20 mA (0 to 20 mA) are available.
	Frequency setting	Analog Input	Terminal 1: -10 to +10 V, -5 to +5 V are available.
	signal	Digital input	Input using the setting dial of the operation panel or parameter unit Four-digit BCD or 16-bit binary (when used with option FR-A8AX)
	Start signal		Forward and reverse rotation or start signal automatic self-holding input (3-wire input) can be selected.
	Input signals (twelve termi		The following signals can be assigned to Pr.178 to Pr.189 (input terminal function selection): Low-speed operation command, Middle-speed operation command, High-speed operation command, Second function selection, Terminal 4 input selection, Jog operation selection, Selection of automatic restart after instantaneous power failure, flying start, Output stop, Start self-holding selection, Forward rotation command, Reverse rotation command,Inverter reset
ö	Pulse tra	in input	100 kpps Maximum and minimum frequency settings, multi-speed operation, acceleration/deceleration pattern, thermal protection, DC injection
Operation specifications	Operational functions		brake, starting frequency, JOG operation, output stop (MRS), stall prevention, regeneration avoidance, increased magnetic excitation deceleration, DC feeding-3, frequency jump, rotation display, automatic restart after instantaneous power failure, electronic bypass sequence, remote setting, automatic acceleration/deceleration, retry function, carrier frequency selection, fast-response current limit, forward/reverse rotation prevention, operation mode selection, slip compensation, doop control, load torque high-speed frequency control, speed smoothing control, traverse, auto tuning, applied motor selection, gain tuning, R>485 communication, Ethernet communication-s, PID control, PID pre-charge function, easy dancer control, cooling fan operation selection, stop selection (deceleration stop/coasting), power failure time deceleration-to-stop function, stop-on-contact control, PLC function, life diagnosis, maintenance timer, current average monitor, multiple rating, orientation control-1, speed control, power supply input for control cruit, safety stop function, anti-sway control, low-speed range speed control P gain, shortes-time torque startup, inching time adjustment function, brake sequence function
	Open collector output		Inverter running, Up to frequency, Instantaneous power failure/undervoltage+3, Overload warning, Output frequency detection,
	ର୍ଜ୍ଜ (five term ଜ Relay out		Fault The output signal can be changed using Pr.190 to Pr.196 (output terminal function selection) .
	two term	ninals)	Fault codes of the inverter can be output (4 bits) from the open collector.
	Green coll (five term Relay out (two term O (FM type)		50 kpps
	<u> </u>	, Pulse train output (FM type)	Max. 2.4 kHz: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection .
ы	For meter	Current output (CA type)	Max. 20 mADC: one terminal (output frequency) The monitored item can be changed using Pr.54 FM/CA terminal function selection .
cati		Voltage output	Max. 10 VDC: one terminal (output frequency)
Indication		Operating	The monitored item can be changed using Pr.158 AM terminal function selection . Output frequency, Output current, Output voltage,Frequency setting value
	Operation panel	status	The monitored item can be changed using Pr.52 Operation panel main monitor selection .
	(FR-DU08)	Fault record	Fault record is displayed when a protective function is activated. Past 8 fault records and output voltage/current/frequency/ cumulative energization time / year/month/date/time immediately before the protective function is activated are stored.
Protective/ warning function		Protective function	Overcurrent trip during acceleration, Overcurrent trip during constant speed, Overcurrent trip during deceleration or stop, Regenerative overvoltage trip during acceleration, Regenerative overvoltage trip during constant speed, Regenerative overvoltage trip during deceleration or stop, Inverter overload trip, Motor overload trip, Heatsink overheat, Instantaneous power failure-3, Undervoltage-3, Input phase loss-3+4, Stall prevention stop, Loss of synchronism detection-4, Brake transistor alarm detection, Output side earth (ground) fault overcurrent, Output short circuit, Output phase loss, External thermal relay operation+4, PTC thermistor operation+4, Option fault, Communication option fault, Parameter storage device fault, PU disconnection, Retry count excess+4, Parameter storage device fault, CPU fault, Operation panel power supply short circuit/RS-485 terminals power supply short circuit, 24 VDC power fault, Abnormal output current detection+4, Inrush current limit circuit fault+3, Communication fault, Analog input fault, USB communication fault, Safety circuit fault, Overspeed occurrence+4, Speed deviation excess detection+1+4, Signal loss detection+1+4, Excessive position fault+1-4, Brake sequence fault+4, Encoder phase fault+1+4, 4 mA input fault+4, Pre-charge fault+4, PID signal fault+4, Option fault, Opposite rotation deceleration fault+4, Internal circuit fault, Magnetic pole position unknown+1
		Warning function	Fan alarm, Stall prevention (overcurrent), Stall prevention (overvoltage), Regenerative brake pre-alarm-3+4, Electronic thermal relay function pre-alarm, PU stop, Speed limit indication-4, Parameter copy, Safety stop, Maintenance signal output-4, USB host error, Home position return setting error-4, Home position return uncompleted-4, Home position return parameter setting error-4, Operation panel lock-4, Password locked+4, Parameter write error, Copy operation error, 24 V external power supply operation, Ethernet communication fault+5
÷	Surrounding	air temperature	-10°C to +50°C (non-freezing) (LD, ND, and HD ratings) -10°C to +40°C (non-freezing) (SLD rating)
Environment	Surrounding	air humidity	95% RH or less (non-condensing) (With circuit board coating (IEC60721-3-3: 1994 3C2/3S2 compatible)) 90% RH or less (non-condensing) (Without circuit board coating)
iror	Storage temp	perature*6	-20°C to +65°C
Ę	Atmosphere		Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt, etc.) Maximum 2500 m (For installation at an altitude above 1000 m, consider a 3% reduction in the rated current per 500 m increase
	Altitude/vibra	ation	in altitude.), 5.9 m/s ² or less*7 at 10 to 55 Hz (directions of X, Y, Z axes)
	*1 *2	The vector cont	or or is available only when a vector control compatible option is installed.


The vector control is available only when a vector control compatible option is installed. In the initial setting for the FR-A820-00340(5.5K) or higher and the FR-A840-00170(5.5K) or higher, the starting torque is limited to 150% by the torque limit level. Available only for the standard model. This protective function is not available in the initial status. Available for the FR-A800-E only. Temperature applicable for a short time, e.g. in transit. 2.9 m/s² or less for the FR-A840-04320(160K) or higher. *2

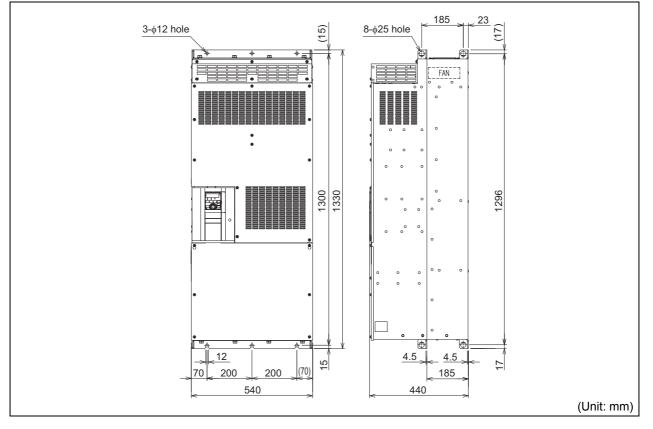
*3 *4 *5 *6 *7

2

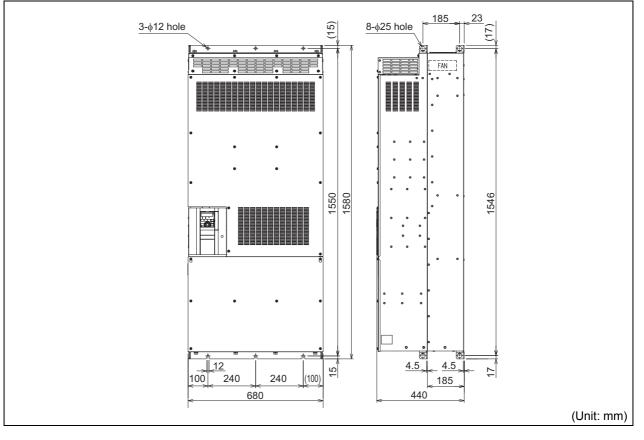
Outline dimensions

• Standard model

♦ 200 V class


Inverter model	W	W1	Н	H1	D	C
FR-A820-00046(0.4K)	110	95			110	
FR-A820-00077(0.75K)	110	90			125	
FR-A820-00105(1.5K)						
FR-A820-00167(2.2K)	150	125	260	245	140	6
FR-A820-00250(3.7K)						0
FR-A820-00340(5.5K)					170	
FR-A820-00490(7.5K)	220	195			170	
FR-A820-00630(11K)			300	285		
FR-A820-00770(15K)					190	
FR-A820-00930(18.5K)	250	230	400	380	190	10
FR-A820-01250(22K)						10
FR-A820-01540(30K)	325	270		530	195	
FR-A820-01870(37K)	435	380	550	525		
FR-A820-02330(45K)	433	300		525	250	
FR-A820-03160(55K)		410	700	675]	12
FR-A820-03800(75K)	465	400	740	715	360	
FR-A820-04750(90K)		400	740	115	360	

♦ 400 V class


Inverter model	W	W1	н	H1	D	С
FR-A840-00023(0.4K)						
FR-A840-00038(0.75K)						
FR-A840-00052(1.5K)	150	125			140	
FR-A840-00083(2.2K)			260	245		
FR-A840-00126(3.7K)						6
FR-A840-00170(5.5K)					170	
FR-A840-00250(7.5K)	220	195			170	
FR-A840-00310(11K)	220	195	300	285		
FR-A840-00380(15K)			300	200	190	
FR-A840-00470(18.5K)	250	230 400 380	380	190		
FR-A840-00620(22K)	250	230	400	300		10
FR-A840-00770(30K)	325	270		530	195	
FR-A840-00930(37K)			550		250	
FR-A840-01160(45K)	435	380	550	525		
FR-A840-01800(55K)						
FR-A840-02160(75K)			620	595	300	
FR-A840-02600(90K)	465	400	020	393	300	
FR-A840-03250(110K)	403	400	740	715	360	12
FR-A840-03610(132K)			740	715	300	12
FR-A840-04320(160K)	498	200		985		
FR-A840-04810(185K)	-30	200		300		
FR-A840-05470(220K)			1010		380	
FR-A840-06100(250K)	680	300		984		
FR-A840-06830(280K)						

• Separated converter type

FR-A842-07700(315K), 08660(355K)

FR-A842-09620(400K), 10940(450K), 12120(500K)

Crane function parameters

The following marks are used to show the applicable control method: Magnetic flux for Advanced magnetic flux vector control, Sensorless for Real sensorless vector control, Vector for vector control, and PM sensorless vector control. (Parameters without any mark are valid for all controls.)

Pr. denotes parameter numbers, GROUP denotes group parameter numbers.

Parameter list

The following parameters are dedicated to the FR-A800-CRN. Set the parameters according to applications.

Pr.	GROUP	Name	Setting range	Minimum setting increment	Initial value	Refer to page	Cus- tomer setting
178 to 189	T700 to T711	Input terminal function selection	54*1	1	*2	22	
190 to 196	M400 to M406	Output terminal function selection	221 to 223, 321 to 323*1	1	*2	22, 23	
270		Stop-on contact/load torque high-speed frequency control selection	0 to 3, 4, 5, 11, 13, 15	1	0	21	
1400	A160	Low-speed range speed control P gain 1	0 to 1000%, 9999	1%	9999	20	
1401	A161	Low-speed range speed control P gain 2	0 to 1000%, 9999	1%	9999	20	
1402	A162	Low-speed range gain corner frequency 1	0 to 60 Hz	0.01 Hz	3 Hz	20	
1403	A163	Low-speed range gain corner frequency 2	0 to 60 Hz	0.01 Hz	5 Hz	20	
1404	A164	Shortest-time torque startup selection	0, 1	1	0	20	
1405	A165	Overload detection time	0 to 10 s	0.1 s	1 s	22	
1406	A166	Inching prevention time	0 to 5 s	0.01 s	0 s	20	
1407	A167	Magnetic flux command during pre-exci- tation	0 to 100%	1%	9999	21	
1408		Brake opening current for reverse rota- tion	0 to 400%	0.1 %	9999	23	
1409	A169	Second brake opening current for reverse rotation	0 to 400%	0.1 %	9999	23	
1410	A170	Starting times lower 4 digits	0 to 9999	1	0	24	
1411	A171	Starting times upper 4 digits	0 to 9999	1	0	24	

*1

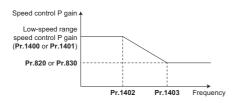
For other settings, refer to the Instruction Manual (Detailed) of the FR-A800 inverter. For the initial setting of each parameter, refer to the Instruction Manual (Detailed) of the FR-A800 inverter. *2

19

Parameter details

Low-speed range speed control P gain Sensorless Vector PM

Pr.	GROUP	Name	Pr.	GROUP	Name
1400	A160	Low-speed range speed control P gain 1	1401	A161	Low-speed range speed control P gain 2
1402	A162	Low-speed range gain corner frequency 1	1403	A163	Low-speed range gain corner frequency 2


- The P gain for speed control in the low-speed range can be adjusted.
- When an inverter is connected to a lift, the inverter has a load
 immediately after the lift brake is released. For lift

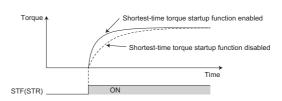
applications, slow response may cause a delay in the brake opening. Adjusting the speed control P gain in the low-speed range improves the response at low speed, and shortens the time from startup to brake opening. This will contributes to a reduction in tact time.

Pr.	Setting range	Description
1400	0 to 1000%	Set the proportional gain during speed control in the low-speed range. (Setting this parameter higher improves the trackability for speed command changes. It also reduces the speed fluctuation caused by external disturbance.)
	9999 (Initial value)	Low-speed range speed control P gain 1 disabled
1404	0 to 1000%	Second function of Pr.1400 (enabled when RT signal ON)
1401	9999 (Initial value)	Low-speed range speed control P gain 2 disabled
1402	0 to 60 Hz	Set the P gain operation during speed control
1403	0 to 60 Hz	in the low-speed range.

Low-speed range speed control P gain operation

• The P gain operation during speed control in the low-speed range is determined by the **Pr.1402** and **Pr.1403** settings.

Shortest-time torque startup

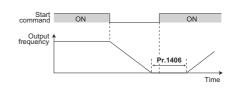

Sensorless Vector

Pr.	GROUP	Name
1404	A164	Shortest-time torque startup selection

- · The torque is started up in the shortest time.
- When an inverter is connected to a lift, the inverter has a load immediately after the lift brake is released. For lift applications, slow torque startup may cause a delay in the brake opening. Using the shortest-time torque startup function shortens the time from startup to brake opening. This will contribute to a reduction in tact time.

Pr.	Setting range	Description
1404	0 (Initial value)	Shortest-time torque startup disabled
1404	1	Shortest-time torque startup enabled

• When **Pr.1404=**"1" and the inverter is not in stop status, the torque is generated by the shortest-time torque startup function.

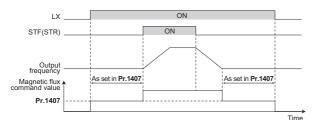

Inching time adjustment function

Pr.	GROUP	Name
1406	A166	Inching prevention time

- By setting a waiting time after the inverter is stopped until the inverter is restarted, inching in the setting time can be prevented.
- When the inverter is repeatedly started and stopped for a short time, overcurrent may occur due to the effect of the motor residual magnetic flux. Adjust the waiting time after the inverter is stopped until the inverter is restarted to suppress current.

Pr.	Setting range	•
1406	0 to 5 s	Set the time after the inverter output is stopped until the inverter output can be restarted.

 After the inverter output is stopped by turning OFF the start command, the inverter output cannot be restarted for the time set in **Pr.1406**.


Magnetic flux command during preexcitation Sensorless Vector

Pr.	GROUP	Name
1407	A167	Magnetic flux command during pre-excitation

 Adjusting the magnetic flux command during pre-excitation reduces the excitation ratio and power consumption during standby.

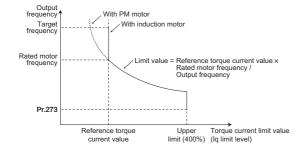
Pr.	Setting range	Description		
1407	0 to 100%	Set the magnetic flux command value during pre-excitation.		
		Magnetic flux command during pre- excitation disabled		

- When the pre-excitation signal (LX) is turned ON while the start command (STF/STR) is OFF, the inverter operates in the magnetic flux command value set in **Pr.1407**.
- During deceleration after the start command is OFF or during DC injection brake operation, the inverter operates in normal magnetic flux command value.

Load torque high-speed frequency control (mode 2)

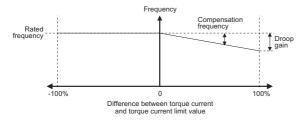
Pr.	GROUP	Name	Pr.	GROUP	Name
270	A200	Stop-on contact/ load torque high- speed frequency control selection	271	A201	High-speed setting maximum current
272	A202	Middle-speed setting minimum current	273	A203	Current averaging range
274	A204	Current averaging filter time constant	286	G400	Droop gain
287	G401	Droop filter time constant	288	G402	Droop function activation selection
4	D301	Multi-speed setting (high speed)	5	D302	Multi-speed setting (middle speed)

- Load torque high-speed frequency control is a function that automatically sets the operable frequency according to the load.
- After starting the inverter, the inverter runs at high frequency with a light load, or at low frequency with a heavy load, depending on the value of the current. When light loads are moved up or down by a crane, the speed will accelerate automatically, which contributes to reduction in tact time.


Pr.	Setting range	Description				
4	0 to 590 Hz	Set the target frequency during for	orward rotation.			
5	0 to 590 Hz	Set the target frequency during re	everse rotation.			
	0 (Initial value)	Normal operation				
	1	Stop-on-contact control*1				
	2	Load torque high-speed frequency control (mode 1)*1				
	3	Stop-on contact + load torque hig frequency control (mode 1)*1	h- speed			
	4	Load torque high-speed frequency	y control (mode 2)			
270	5	Stop-on contact + load torque hig frequency control (mode 2)	h- speed			
	11	Stop-on-contact control*1				
	13	Stop-on contact + load torque high- speed frequency control (mode 1)*1	E.OLT invalid under stop-on-			
	15	Stop-on contact + load torque high- speed frequency control (mode 2)	contact control			
271	0 to 400%	Set the reference torque current v forward rotation.	alue during			
272	0 to 400%	Set the reference torque current v reverse rotation.	alue during			
273 0 to 590 Hz 9999 (initial value)		Set the frequency at which load torque high-speed frequency control (mode 2) is started.				
		Load torque high-speed frequency control (mode 2) starts at 50% of the rated motor frequency.				
274	1 to 4000 A larger setting results in a stable operation with poorer response.					
	0 (Initial value)	Nithout output frequency compensation				
286	0.1 to 1000%*2	Compensate the output frequency to suppress the torque rise after stopping acceleration.				
287	0 to 1 s	Set the filter time constant to apply torque.	y to the current for			
	0 (Initial value)	Without droop control 2 during acceleration/deceleration (With 0 limit)				
1		Spool diameter expansion Rated motor compensation frequency is th Constant droop control 2 during droop operation compensation (With 0 limit) reference.				
288	2	Constant droop control 2 during operation (Without 0 limit)				
	10	Without droop control 2 during acceleration/deceleration (With 0 limit)	Motor speed is the droop			
	11	Constant droop control 2 during operation (With 0 limit)				

 For the load torque high speed frequency control (mode 1) and the stop-on-contact control, refer to the Instruction Manual (Detailed) of the FR-A800 inverter.

*2 When "load torque high-speed frequency control (mode 2)" is not selected, the droop gain is internally restricted to 100% even if a value exceeding 100% is set.

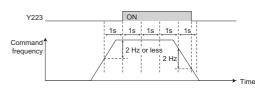

Operation of load torque high-speed frequency control (mode 2)

- The maximum frequency (**Pr.4** or **Pr.5**) is used as the target frequency for acceleration.
- When the output current (Iq) reaches or exceeds the torque current limit value (Iq limit level), acceleration is interrupted.
- When the output current (Iq) decreases by the interruption, acceleration starts again.
- By switching between acceleration and stopping, acceleration is controlled so that the torque current matches the torque current limit value.

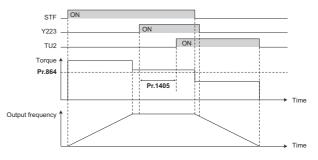
Spool diameter expansion compensation (droop control 2)

- When a wire rope is wound, the motor torque increases along with the increase in spool diameter. The output frequency can be compensated in proportion to the increase in motor torque using droop control 2.
- To compensate against spool diameter expansion, set Pr.288
 Droop function activation selection = Droop gain.

Overload detection


Pr.	GROUP	Name	Pr.	GROUP	Name
864	M470	Torque detection	1405	A165	Overload detection time

- The constant speed signal (Y223) can be output when the range of speed fluctuations is small. By the output of the constant speed signal output, the load torque without the acceleration/ deceleration torque can be confirmed. When this function is used together with the PLC function, the superordinate controller, etc., the control according to the load is enabled.
- The overload can be detected during constant speed operation. When too much load is applied (overload) to a crane, the overload detection signal (TU2) output transmits the information to the superordinate controller.

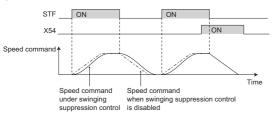

Pr.	Setting range	Description		
864	0 to 400%	Set the torque value where the TU2 signal turns ON.		
1405	0 to 10 s	Set the time from when the motor torque reaches or exceeds the Pr.864 setting until the overload detection signal (TU2) is output.		

Constant speed signal (Y223 signal)

- When the range of the command frequency fluctuations is 2 Hz/s or less while the inverter is running, the constant speed signal (Y223) is turned ON. When the inverter stops, or when the range of the command frequency fluctuations is more than 2 Hz/s, the constant speed signal (Y223) is turned OFF.
- For the Y223 signal, set "223 (positive logic) or 323 (negative logic)" in one of Pr.190 to Pr.196 (output terminal function selection) to assign the function to the output terminal.

- Overload detection (Pr.864, Pr.1405, TU2 signal)
- During constant speed operation (the Y223 signal ON), when the motor torque is equal to or higher than the value set in
 Pr.864 Torque detection for a continuous time equal to or longer than the value set in Pr.1405 Overload detection time, the overload detection signal (TU2) is turned ON. When the TU2 signal is ON, the TU2 signal stays ON until the inverter output stops.
- For the TU2 signal, set "221 (positive logic) or 321 (negative logic)" in one of **Pr.190 to Pr.196 (output terminal function selection)** to assign the function to the output terminal.

Anti-sway control


Pr.	GROUP	Name	Pr.	GROUP	Name
1072	A310	DC brake judgment time for anti-sway control operation	1073	A311	Anti-sway control operation selection
1074	A312	Anti-sway control frequency	1075	A313	Anti-sway control depth
1076	A314	Anti-sway control width	1077	A315	Rope length
1078	A316	Trolley weight	1079	A317	Load weight

- When an object is moved by a crane, swinging is suppressed on the crane's traveling axis.
- Anti-sway control can be disabled with the anti-sway control disabled signal (X54).

Pr.	Setting range	Description	
1072	0 to 10 s	Set the time from when the output frequency becomes the Pr.10 DC injection brake operation frequency or less to when the DC injection brake (zero speed control or the servo lock) operation starts.	
1073	0 (Initial value)	Anti-sway control disabled	
1073	1	Anti-sway control enabled	
	0.05 to 3 Hz	Set a swinging frequency of the object.	
1074	9999	Anti-sway control is performed using a swinging frequency estimated by the inverter according to the settings of Pr.1077 to Pr.1079 .	
1075	0 to 3	0 (Deep) \rightarrow 3 (Shallow)	
1076	0 to 3	0 (Narrow) \rightarrow 3 (Wide)	
1077	0.1 to 50 m	Set the crane rope length.	
1078 1 to 50000 kg		Set the trolley weight.	
1079	1 to 50000 kg	Set the weight of the object.	

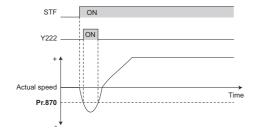
Anti-sway control disabled signal (X54 signal)

- When anti-sway control is enabled, the travel distance between the positions where the crane starts deceleration and where the crane stops becomes longer. For an emergency stop by a system using a position confirmation sensor, disable anti-sway control to shorten the stopping distance.
- When anti-sway control is enabled (Pr.1073Anti-sway control operation selection="1"), turning ON the anti-sway control disabled signal (X54) disables anti-sway control.
- For the X54 signal, set "54" in any of Pr.178 to Pr.189 (input terminal function selection) to assign the function to the input terminal.

Falling detection VIF Magnetic flux Vector

Pr.	GROUP	Name
870	M400	Speed detection hysteresis

Setting


range

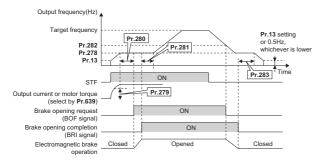
Pr

- When the commanded direction differs from the actual motor rotation direction, the falling detection signal (Y222) can be output.
- Slippage during the start of a lift can be checked.
- (A speed detector such as an encoder is required.)

Description

- 870 0 to 5 Hz Set the hysteresis width for the detected frequency.
 When the commanded direction differs from the actual motor rotation direction, and the actual motor speed is higher than the value set in **Pr.870 Speed detection hysteresis**, the falling detection signal (Y222) is turned ON.
- For the Y222 signal, set "222 (positive logic) or 322 (negative logic)" in any of **Pr.190 to Pr.196 (output terminal function selection)** to assign the function to the output terminal.

Brake opening current level setting for reverse rotation (Brake sequence function)

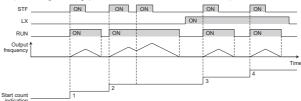

Pr.	GROUP	Name	Pr.	GROUP	Name
278	A100	Brake opening frequency	279	A101	Brake opening current
280	A102	Brake opening current detection time	281	A103	Brake operation time at start
282	A104	Brake operation frequency	283	A105	Brake operation time at stop
284	A106	Deceleration detection function selection	285	A107	Overspeed detection frequency
292	F500	Automatic acceleration/ deceleration	639	A108	Brake opening current selection
640	A109	Brake operation frequency selection	641	A130	Second brake sequence operation selection
642	A120	Second brake opening frequency	643	A121	Second brake opening current
644	A122	Second brake opening current detection time	645	A123	Second brake operation time at start
646	A124	Second brake operation frequency	647	A125	Second brake operation time at stop
648	A128	Second deceleration detection function selection	650	A128	Second brake opening current selection
651	A129	Second brake operation frequency selection	1408	A168	Brake opening current for reverse rotation
1409	A169	Second brake opening current for reverse rotation			

• The brake sequence function enables setting of the brake opening level individually for forward rotation and reverse rotation.

Pr.	Setting range	Description
1408	0 to 400%	Set the brake opening current during reverse rotation. Set between 50 and 90% because load slippage is more likely to occur at a start setting is too low.
	9999 (Initial value)	During reverse rotation, the Pr.279 setting is applied.
1409	0 to 400%	Set the brake opening current during reverse rotation in the second brake sequence function.
	9999 (Initial value)	During reverse rotation, the Pr.643 setting is applied.

• When the start signal is input to the inverter, the inverter starts running, and when the output frequency reaches the frequency set in **Pr.278 Brake opening frequency** and the output current is equal to or greater than the Brake opening current setting, the brake opening request signal (BOF) is output after the time set in **Pr.280 Brake opening current detection time**.

 The output current level or the motor torque level to output the BOF signal can be set individually for forward rotation and reverse rotation. Set the output current or the motor torque during reverse rotation in Pr.1408 Brake opening current for reverse rotation. (When Pr.1408 = "9999", the Pr.279 setting is applied also during reverse rotation.)


Start count monitor

Pr.	GROUP	Name	Pr.	GROUP	Name
1410	A170	Starting times lower 4 digits	1411	A171	Starting times upper 4 digits

- The inverter starting times can be counted.
- Confirming the starting times can be used to determinate the timing of the maintenance, or can be used as a reference for system inspection or parts replacement.

Pr.	Setting range	Description
1410		Displays the lower four digits of the number of the inverter starting times.
1411	0 to 9999	Displays the upper four digits of the number of the inverter starting times.

 Every start signal input (the RUN signal ON) while the inverter output is stopped is counted as the inverter starting time. (Starting during pre-excitation is also counted.)

Major differences between the FR-A800-CRN (RS-485 communication model) and the FR-A800-E-CRN (Ethernet communication model)

Item	FR-A800-CRN (RS-485 communication model)	FR-A800-E-CRN (Ethernet communication model)	
Standard equipment	RS-485 terminals	Ethernet connector	
		MODBUS/TCP	
		MELSOFT / FA product connection	
Communication	Mitsubishi inverter protocol MODBUS RTU protocol	SLMP	
		iQSS	
		CC-Link IE Field Network Basic	
Number of connectable plug-in options	3	2 (initial status)	
Optional screw-type terminal block (FR-A8TR)	Can be used.	Cannot be used.	

Warranty

When using this product, make sure to understand the warranty described below.

1. Warranty period and coverage

We will repair any failure or defect (hereinafter referred to as "failure") in our FA equipment (hereinafter referred to as the "Product") arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.

[Term]

The term of warranty for Product is twelve months after your purchase or delivery of the Product to a place designated by you or eighteen months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

- (1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule. It can also be carried out by us or our service company upon your request and the actual cost will be charged.
- However, it will not be charged if we are responsible for the cause of the failure.
- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - 1) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - a failure caused by any alteration, etc. to the Product made on your side without our approval.
 a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a failure caused by any alteration, etc. to the Product made on your side without our approval
 - a common sense in the industry
 a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly
 - maintained and replaced

 - a) any replacement of consumable parts (condenser, cooling fan, etc.)
 a) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 7) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company

 - 8) any other failures which we are not responsible for or which you acknowledge we are not responsible for

2. Term of warranty after the stop of production

- (1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The
- announcement of the stop of production for each model can be seen in our Sales and Service, etc. (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.
- 3 Service in overseas

Our regional FA Center in overseas countries will accept the repair work of the Product; however, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of responsibility for compensation against loss of opportunity, secondary loss, etc.

- Regardless of the gratis warranty term, Mitsubishi Electric shall not be liable for compensation to:
- Damages caused by any cause found not to be the responsibility of Mitsubishi Electric.
 Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi Electric products.

(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi Electric products.

(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

- 6. Application and use of the Product
 - (1) For the use of our product, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in product, and a backup or fail-safe function should operate on an external system to product when any failure or malfunction occurs.
 - (2) Our product is designed and manufactured as a general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used.

In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used.

We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

Support Global FA Center UK FA Center

Germany FA Center Italy FA Center Czech Republic FA Center Turkey FA Center India Ahmedabad FA Center

Shanghai FA Center

MITSUBISHI ELECTRIC AUTOMAITON (CHINA) LTD. Shanghai PT. MITSUBISHI ELECTRIC INDONESIA Cikarang Office FA Center Mitsubishi Electric Automation Center, No.1386 Hongqiao Road, Shanghai, China

TEL. 86-21-2322-3030 FAX. 86-21-2322-3000 (9611#)

· Beijing FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Beijing FA Center 5/F, ONE INDIGO, 20 Jiuxianqiao Road Chaoyang District, Beijing, China

TEL. 86-10-6518-8830 FAX. 86-10-6518-2938

Tianjin FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Tianjin FA Center Room 2003 City Tower, No.35, Youyi Road, Hexi District, Tianjin, China

TEL. 86-22-2813-1015 FAX. 86-22-2813-1017

Guangzhou FA Center

MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Guangzhou FA Center Room 1609, North Tower, The Hub Center, No.1068, Xingang East Road, Haizhu District, Guangzhou, China TEL. 86-20-8923-6730 FAX. 86-20-8923-6715

Korea FA Center

MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. 8F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro , Gangseo-Gu, Seoul 07528. Korea TEL. 82-2-3660-9630 FAX. 82-2-3664-0475

• Taipei FA Center

SETSUYO ENTERPRISE CO., LTD. 3F, No.105, Wugong 3rd Road, Wugu District, New Taipei City 24889, Taiwan TEL. 886-2-2299-9917 FAX. 886-2-2299-9963

• Taichung FA Center

MITSUBISHI ELECTRIC TAIWAN CO., LTD. No.8-1, Industrial 16th Road, Taichung Industrial Park, Taichung City 40768 Taiwan TEL. 886-4-2359-0688 FAX. 886-4-2359-0689

Thailand FA Center

MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) TEL. 91-7965120063 12th Floor, SV.City Building, Office Tower 1, No. 896/19 and 20 • North America FA Center Rama 3 Road, Kwaeng Bangpongpang, Khet Yannawa, Bangkok MITSUBISHI ELECTRIC AUTOMATION, INC. 10120. Thailand TEL. 66-2682-6522 to 31 FAX. 66-2682-6020

ASEAN FA Center

MITSUBISHI ELECTRIC ASIA PTE. LTD.

307, Alexandra Road, Mitsubishi Electric Building, Singapore 159943 TEL. 65-6470-2480 FAX. 65-6476-7439

Indonesia FA Center

Europe FA Center **Russia FA Center** Beiiing FA Center **Tianjin FA Center**

Shanghai FA Center

Guangzhou FA Center

India Gurgaon FA Center India Pune FA Center India Pune FA Center India Bangalore FA Center India Chennai FA Center

Thailand FA Center

ASEAN FA Center ndonesia FA Center

> JI. Kenari Raya Blok G2-07A Delta Silicon 5, Lippo Cikarang -Bekasi 17550, Indo TEL. 62-21-2961-7797 FAX. 62-21-2961-7794

Korea FA Center

Taipei FA Center

Hanoi FA Center 😴 Ho Chi Minh FA Center

Taichung FA Cente

Hanoi FA Center

MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Hanoi Branch Office

6th Floor, Detech Tower, 8 Ton That Thuyet Street, My Dinh 2 Ward, Nam Tu Liem District, Hanoi, Vietnam

TEL, 84-4-3937-8075 FAX, 84-4-3937-8076

• Ho Chi Minh FA Center

MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Unit 01-04, 10th Floor, Vincom Center, 72 Le Thanh Ton Street, District 1, Ho Chi Minh City, Vietnam TEL. 84-8-3910-5945 FAX. 84-8-3910-5947

India Pune FA Cente

MITSUBISHI ELECTRIC INDIA PVT. LTD. Pune Branch Emerald House, EL -3, J Block, M.I.D.C Bhosari, Pune - 411026, Maharashtra, India TEL. 91-20-2710-2000 FAX. 91-20-2710-2100

India Gurgaon FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD. Gurgaon Head Office 2nd Floor, Tower A & B, Cyber Greens, DLF Cyber City, DLF Phase III, Gurgaon - 122002 Haryana, India TEL. 91-124-463-0300 FAX. 91-124-463-0399

India Bangalore FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD. Bangalore Branch Prestige Emerald, 6th Floor, Municipal No. 2, Madras Bank Road, Bangalore - 560001, Karnataka, India TEL. 91-80-4020-1600 FAX. 91-80-4020-1699

India Chennai FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD. Chennai Branch Citilights Corporate Centre No.1, Vivekananda Road, Srinivasa • Czech Republic FA Center Nagar, Chetpet, Chennai - 600031, Tamil Nadu, India TEL. 91-4445548772 FAX. 91-4445548773

India Ahmedabad FA Center

MITSUBISHI ELECTRIC INDIA PVT. LTD. Ahmedabad Branch B/4, 3rd Floor, SAFAL Profitaire, Corporate Road, Prahaladnagar, Satellite, Ahmedabad - 380015, Gujarat, India

500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A. TEL. 1-847-478-2334 FAX. 1-847-478-2253

Mexico FA Center

MITSUBISHI ELECTRIC AUTOMATION, INC. Queretaro Office Parque Tecnologico Innovacion Queretaro Lateral Carretera Estatal 431, Km 2 200, Lote 91 Modulos 1 y 2 Hacienda la Machorra, CP 76246, El Marques, Queretaro, Mexico TEL. 52-442-153-6014

Mexico Monterrey FA Center

MISUBISHI ELECTRIC AUTOMATION, INC. Monterrey Office Plaza Mirage, Av. Gonzalitos 460 Sur, Local 28, Col. San Jeronimo, Monterrey, Nuevo Leon, C.P. 64640, Mexico TEL. 52-55-3067-7521

North America FA Center

Mexico Monterrey FA Center

Brazil FA Center Brazil Votorantim FA Center

Mexico FA Cent

Aexico City FA Center

Mexico City FA Center

MITSUBISHI ELECTRIC AUTOMATION, INC. Mexico Branch Mariano Escobedo #69, Col.Zona Industrial, TlaInepantla Edo. Mexico, C.P.54030 TEL. 52-55-3067-7511

Brazil FA Center

MITSUBISHI ELECTRIC DO BRASIL COMERCIO E SERVICOS LTDA.

Avenida Adelino Cardana, 293, 21 andar, Bethaville, Barueri SP, Brazil TEL. 55-11-4689-3000 FAX. 55-11-4689-3016

Brazil Votorantim FA Center

MELCO CNC DO BRASIL COMERCIO E SERVICOS S A Avenida Gisele Constantino,1578, Parque Bela Vista - Votorantim-SP. Brazil TEL, 55-15-3023-9000 FAX, 55-15-3363-9911

Europe FA Center

MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch ul. Krakowska 50, 32-083 Balice, Poland TEL. 48-12-347-65-81

Germany FA Center

MITSUBISHI ELECTRIC EUROPE B.V. German Branch Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany TEL. 49-2102-486-0 FAX. 49-2102-486-1120

UK FA Center

MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Travellers Lane, Hatfield, Hertfordshire, AL10 8XB, UK. TEL 44-1707-28-8780 EAX 44-1707-27-8695

MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch Pekarska 621/7, 155 00 Praha 5, Czech Republic TEL, 420-255 719 200

 Italy FA Center MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Centro Direzionale Colleoni - Palazzo Sirio, Viale Colleoni 7, 20864 Agrate Brianza (MB), Italy TEL, 39-039-60531 FAX, 39-039-6053-312

Russia FA Center

MITSUBISHI ELECTRIC (Russia) LLC St. Petersburg Branch Piskarevsky pr. 2, bld 2, lit "Sch", BC "Benua", office 720; 195027, St. Petersburg, Russia TEL. 7-812-633-3497 FAX. 7-812-633-3499

MITSUBISHI ELECTRIC TURKEY A.S. Umranive Branch Serifali Mahallesi Nutuk Sokak No:5, TR-34775 Umraniye / Istanbul, Turkey TEL. 90-216-526-3990 FAX. 90-216-526-3995

6

YOUR SOLUTION PARTNER

Mitsubishi Electric offers a wide range of automation equipment from PLCs and HMIs to CNC and EDM machines.

A NAME TO TRUST

Since its beginnings in 1870, some 45 companies use the Mitsubishi name, covering a spectrum of finance, commerce and industry.

The Mitsubishi brand name is recognized around the world as a symbol of premium quality.

Mitsubishi Electric Corporation is active in space development, transportation, semi-conductors, energy systems, communications and information processing, audio visual equipment and home electronics, building and energy management and automation systems, and has 237 factories and laboratories worldwide in over 121 countries.

Trademarks

This is why you can rely on Mitsubishi Electric automation solution - because we know first hand about the need for reliable, efficient, easy-to-use automation and control in our own factories.

As one of the world's leading companies with a global turnover of over 4 trillion Yen (over \$40 billion), employing over 100,000 people, Mitsubishi Electric has the resource and the commitment to deliver the ultimate in service and support as well as the best products.

Low voltage: MCCB, MCB, ACB

Medium voltage: VCB, VCC

Power monitoring, energy management

Compact and Modular Controllers

Inverters, Servos and Motors

Visualisation: HMIs

Numerical Control (NC)

Robots: SCARA, Articulated arm

Processing machines: EDM, Lasers, IDS

Transformers, Air conditioning, Photovoltaic systems

is a registered trademark of SCHNEIDER ELECTRIC USA, INC. Ethernet is a registered trademark of Fuji Xerox Corporation in Japan.

* Not all products are available in all countries.

Other company and product names herein are the trademarks and registered trademarks of their respective owners.

DeviceNet is a trademark of the ODVA, PROFIBUS is a trademark of the PROFIBUS User Organization, and MODBUS

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN